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-. Preface

My earliest memory of mathematics recalls writing

numbers in the spaces of a grid. Little did the first

grader know that by creating this "box of numbers", he was

laying the groundwork for subsequent study in matrices,

themselves very special "boxes of numbers." After studying

matrix theory as a high school freshman, I remember hoping

for a chance someday to pursue it in great depth. Though

the hope has now been realized, it will by no means be put

to rest: for my master's in mathematics, I will pick up

* where this thesis left off.

Fortune doesn't always favor us, and as Machiavelli

says, will strike after being wooed and cajoled. However,

she must have been in a good mood in the Fall of "84 because

our class had Dr. John Jones Jr for Numerical Analysis. His

presentation of matrix algebraic concepts delighted me, and

upon discovering his abiding interest and renown with matrix

equations, decided to study under him. Undoubtedly,

Dr Jones was one of two teachers having a profound impact on

my mathematical development. I couldn't have wished for a

finer advisor and coach than him. His patience and positive

outlook sustained me during those times when I was setting

back mathematical science instead of advancing it. For him,

theory and applications are one, though primacy goes to

theory. Just as it should be. Thanks for your interest in

me, Dr Jones. I will return your concern years hence to one

%', ii
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of my students.

To LTC (and Dr.) Charles Ebeling, my reader in the

Operations Research Department, I want to thank for being

*- (I believe) a mathematician at heart, and hence an ally in

the department. I+ I couldn't have done a mathematical

thesis, I would have done a simulation one and sought you

out as an advisor. Thanks for not discouraging me from

pursuing an interest begun years ago.
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Abstract

This paper seeks the solutions to a system of equations

(equalities) in n variables by expressing the system in

matrix algebraic form. Properties of the solutions to the

ensuing matrix equation are investigated using similarity

transformations. The three types of matrix equations to be

* studied are:the linear equation-

I AX = b

the Lypanov equation

AX - XB = C

the second-order Riccati equation -
I

XDX + AX + XB + C =0

and the third-order Riccati equation-

XAXBX + XCX + DX + XE + F 0

The entries of all matrices, including the solution X, are

restricted to being polynomials in r having complex

coefficients, where r is the n-tuple of indeterminates.

That is, all matrices are elements of the ring ¢?xI(P) for

m and n of appropriate size.

'Because adding and multiplying matrices (havingI

multivariate polynomial entries) is tedious in practice, an

interactive BASIC program is presented in the appendix.

This program, which can be used on a personal computer,

permits the user to perform operations on matrices having

multivariate polynomial entries. Via menu selections, the

user may perform

-weighted addition between two matrices

vii
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-multiplication between two matrices
-create matrices, with an option of building a diagonal
matrix whose diagonal entries are all equal

-view matrices
-transpose a matrix
-extract special submatrices (U,M,V,N of Chapter IV)
from a given matrix.
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I Overview and Literature Review

Overview. This paper seeks the solutions of the

third-order Riccati matrix equation

XAXBX + XCX + DX + XE+F0 (1.1)

where the entries of the matrices A,B,C,D,E,F,X are

multivariate polynomials. In solving (1.1) the linear

matrix equation

AX = b

the Lypanov matrix equation

AX - XB = C

I
and the second-order Riccati matrix equation

XDX + AX + XB + C = 0

will be addressed because the form of their solutions will

hint at the nature of those to (1.1). Because cursory

knowledge of matrix algebra is sufficient to motivate the

paper's thesis--the solution to (1.1)--the rigorous (and

lengthy) definition of terms and statement of objective will

be made in the next chapter.

Why a matrix equation (such as those given above) is

worthy of attention, let alone finding its solution, is a

legitimate concern. Practical problems often arise which

require the solution to a system of m equations in n

unknowns, e.g., the system of equations

ax + by = c (1.2)

dx + ey = f

where all variables except x and y are known. One way to

"1.1

I

* .. 4-



find the solutions x and y is to express the system in its

equivalent matrix form

-% (which is a linear matrix equation) and solve for x and y,

[x: [a b] [c]
y d e

Thus, a system of equations may give rise to a matrix

equation whose solution in turn gives the answer to the

original system.

Other more complex systems may have a matrix

representation. For instance

x y1a b
[x yj [ = (1.3)'"c dJ y

S[xa + yc xb + yd] [;]

= xxa + yc) + y(xb + yd)

= [xla + xy(c + b) + yld]

which means that the system consisting of the one equation

xla + xy(c + b) + y2d = e

is represented by the matrix equation (1.3). These two

examples show that matrix equations warrant attention if for

no other reason than they can help solve systems of

equations arising in practical problems. Indeed, given the

0* nonlinear optimization challenge

1.2
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Maximize f(x) subject to (1.4)

equal i ty constraint1

equality constraint.

the constraint set may be expressable as a matrix equation.

If so, this equation can be solved to identify the feasible

region determined by the constraints and thence the optima.

This approach is an alternative to solving (1.4) using, say,

Lagrangian multipliers and partial differential calculus.

In examples (1.2) and (1.4), the variables are often

taken to represent real or complex numbers. However, there

is nothing stopping the variables from assuming functional

values. For instance (1.2) may assume the form

a(u,v)x + b(u,v)y = c(u,v) (1.5)
d(u,v)x + e(u,v)y -f(uv)

where a,b,c,d,e,f are functions of the parameters u and v.

Though the solutions x and y of (1.5) wouldn't necessarily

have numeric values, this is all right because all other

variables are functions: x and y will likely take on

functional forms. To illustrate,

ru.v ul [u+.v [u vu-+V) +u(u-v)1
uv v - uv(u + v) + v(u - v)

= u3 v + uava + u= - uv
Lu~Uv2 uv+uv - v2J

* and so a solution to the matrix equation

uV u xuv) = u-,v +, u vZ- + U2-uv
[UV ] (u v)u uv + u2 uv-

is x(u,v) = u + v and y(uv) = u - v. As given in (1.1),

* this paper will address matrix equations whose entries

1.3
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assume the functional form of a polynomial in several

variables.

Another area where matrix equations appear (where the

matrices' entries are multivariate functions) is control

theory, the science addressing the orbital natures of

objects in space. Matrix equations frequently arise from

systems of differential equations which describe a

satellite's orbit. For example, given X(t) a columnar

matrix whose entries (each describing an aspect of a

satellite's orbit) are functions in the parameter t, a

theorem from control theory states that the equilibrium of

the system of differential equations

dX
-- = FX
dt

is asymptotically stable if the Lypanov matrix equation

FT P + PF = -C (1.6)

has a positive-definite solution P for any matrix C > 0.

Though the terms in this theorem won't be defined here (see

[4:144-1523), the important item is that a satellite's

orbital stability depends on the solution of a Lypanov

matrix equation (1.6).

Matrix equations can also describe the path taken by an

X-ray passing through matter. This is a concern of the

medical community since the quality of CAT scan pictures

depends on the manner in which the X-rays penetrate the

skull. A good description of the path may allow finding a

1.4
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brain tumor, whereas a poorly chosen angle of entry may not.

R. Vasudevan [323 develops higher order Riccati equations

describing how beam particles scatter upon hitting matter,

e.g. the skull. Simply put, scattering is modelled by

including higher powers of a solution matrix X in a Riccati

equation. For instance, scattering may be roughly described

by the second order Riccati equation

XDX + AX + XB + C - 0

and more completely by the third order Riccati equation

XAXBX + XCX + DX + XE + F = 0

where the coefficient matrices A,B,C,DE,F reflect known

characteristics of the environment in which the X-rays

behave. Higher powers of X will more accurately describe

scattering. Bellman and Vasudevan E23 describe techniques

reducing a given Riccati equation to one of lower form.

This reduction (quasi-linearization) leads to a series which

converges to the actual solution of the original equation.

Literature Review. The literature supporting this

paper addresses three topics:

I generalized inverses of matrices
II algebraic structures of matrices over fields and

rings
III the Lypanov and Riccati equations

Cateoorv I. An understanding of matrix

generalized inverses launched the research behind this

paper. Matrix generalized inverses encompass the

traditional notion of an inverse by assigning these to

non-square matrices. The theory is well developed for
1.5
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matrices whose entries are complex numbers, and is described

below.

The physicist R. Penrose C283 proved in 1955 that for

any matrix A whose entries are complex numbers, there exists

matrices U,YZ,W having complex entries such that:

1. AUA - A (1.7)
2. YAY = Y
3. AZ equals its conjugate transpose (i.e.9 AZ is

Hermitian)
4. WA is Hermitian

The matrices U,Y,Z,W are known as the "generalized inverses"

of A. Penrose also showed the existence of a matrix X which

simultaneously satisfied conditions (1) thru (3), and a Y

simultaneously satisfying (1), (2) and (4). Penrose also

showed that if a matrix X satisfied all conditions (given a

(i.- matrix A), then X was unique. From the traditional matrix

algebra viewpoint, this unique X corresponds to the familiar

inverse of a square matrix A whose determinant is not equal

to zero. Though Penrose's work was original, he was unaware

that the mathematician E.H. Moore E243 had proved (using

abstract algebra) the existence of generalized inverses for

arbitrary rings more than three decades earlier.

Rao and Mitra's textbook [293 is devoted to the study

of generalized inverses, and is a frequently cited authority

in this area. The first two chapters of r63 present

techniques (with the justifying theorems) generating various

types of generalized inverses for a given matrix A, while

* Captain Craig Murray, AFIT Class GCS 85D, has recently

1.6
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completed the programming of these techniques. Two papers,

C123 and [213, use generalized inverses to prove theorems

about special types of matrix equations whose entries are

complex numbers.

The power of generalized inverses weakens as one moves

from matrices with complex entries to those with

multivariate entries, the subject of this paper. This is

because the theory in the latter is still very young.

Sontag [31] discusses the existence of some generalized

inverses for special matrices, while Jones El] uses these

-- generalized inverses to solve certain matrix equations.

Cateaorv II. Most of this paper's research dealt

with the decisive influence on the existence and form of

f solutions to matrix equations: the algebraic structure of

matrices. An illustration of the importance of algebraic

structure is readily given: the solution of the equation

x + 7 = 5 (1.8)

cannot be found among the set of positive integers Z- (even

though the coefficients 7 and 5 are positive integers)

* because its structure doesn't include negative numbers.

Since -2 is the solution, (1.8) must be placed in a larger

algebraic structure in order for a solution to exist. Thus

*one moves from Z- to the set of all integers Z. Though Z

has a larger algebraic structure than Z it still isn't

large enough to contain the solution of the equation

* 2x - 8 =7 (1.9)

1.7



even though the coefficients 2,-8,7 are found in Z. It now

becomes necessary to move to a larger structure (the set of

rational numbers) to find the solution to (1.9), 15/2.

Likewise, to solve the equations x2 = 2 and x 2 + 1 = 0 one

must move to the larger algebraic structures found in the

irrational and complex numbers respectively.

Matrices too lend themselves to different structures.

However, not only must the form of a matrix be addressed

(e.g., whether it's invertible, whether it's similar to

another matrix), but the structure in which individual

entries are found must also be considered. For instance,

decomposing a matrix into a product of other matrices may

depend upon whether or not an entry is irreducible in its

own setting. A trivial example is decomposing the I X 1

matrix

ExO + x - 1] (1.10)

into a product of two other 1 X 1 matrices each having

polynomial entries whose coefficients are integer, as is the

entry in (1.10). Such a decomposition is impossible because

x0 + x - I cannot be expressed as a product of two

polynomials with integer coefficients. Indeed, the roots of

this equation are (-I I 5) / 2 , which are irrational.

In general, this paper allows matrix entries to be

multivariate polynomials (having complex coefficients, e.g.,

xO + xy, xy~z - (2 + 3i)xmyz), who in turn have complex

algebraic structures. In fact, a solid understanding of

1.8



* , . abstract algebra would have helped make several articles

intelligible. Though Fraleigh's text E73 was found to be an

excellent primer on abstract algebra, time did not allow

sufficient study of a subject key to this paper. Wang 133]

gives an algorithm for irreducible factoring of multivariate

polynomials having coefficients in an arbitrary algebraic

number field. McClellan E233 presents methods for solving

systems of equations involving univariate polynomials with

rational coefficients (this paper highlights his doctoral

dissertation). Two papers from the early twentieth century,

E33 and E273, discuss the form of factors between

pol ynomi al s.

The algebraic structures of matrices was addressed by

Frost and Storey E83 and Lee and Zak E203. These special

structures, called Smith Forms, are discussed in the next

chapter. Unfortunately, only the Smith Forms of matrices

having bivariate polynomial entries can be addressed: the

Smith Form involving multivariate entries remains an

unresolved issue in mathematics.

4 Cateoory III. Working from a base rooted in

generalized inverses and recognizing the critical role of

algebraic structures on matrices (and again among their

* entries), a study of matrix equations can proceed. Though

much has been published on finding solutions to systems of

equations, many authors succeed in finding only particular

solutions. After all, finding the general forms of all

1.9



: solutions may have either been a far too ponderous task or

the mathematical approach proved elusive. In any case,

viewing a system of multivariate equations as a single

matrix equation (having a solution in its own right) is not

commonplace. Depending on the nature of the system, the

entire solution set may be found by solving a matrix

equation representing the system.

Work has been done on matrix equations having complex

entries. Roth E303 (a frequently cited paper) wrote on the

Lypanov matrix equation in 1952, and had his work extended

* in 1972 by Jones [12] who also addressed the second order

-i Riccati equation, using generalized inverses to identify

solutions. Morris and Odell [25) attempted to find the

" common solutions to a set of linear matrix equations

(AkX Bk) by using generalized inverses. Lancaster [18]

provides several approaches (none using generalized

inverses) to solving :-e matrix equation

E AkXBk = C

As matrix equations assume multivariate polynomial

0 entries, the constraints cited in the previous section

seriously handicap the search for solutions. As a result,

pioneering work in these equations is still underway.

The papers E11], E163 and E17] give recent results connected

with the Lypanov and second/third order Riccati equations.

Collectively, these papers address the roles of generalized

• inverses and matrix algebraic structures in the search for

1.10
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solutions to these matrix equations.
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II Foundations

This chapter lays the groundwork for later

developments. Because this paper seeks solutions to matrix

.4- equations, the latter's nature will be addressed first.

Matrix Eauations. A matrix equation is an algebraic

expression whose arguments involve matrices. Matrix

equations are frequently used to represent a kindred system

of equations. For instance, the system of equations

2x + 3y = 7
4x - 2y = 1

is represented by the matrix equation

which has the familiar form

AX - b (2.1)
where

A [2 _3] X = [X b = [7]

The reason for expressing a system of equations in matrix

algrebraic form is, of course, so that the machinery of

matrix algebra can be used to find a solution to the given

initial system.

Other systems of equations have matrix representations.

For instance, the system

x + 2u = 5
3x + 4u = 7

9x + lOu = 23
y + 2v = 6

* 3y + 4v = 8
9y + 10v - 24
2. 1

,. - . " . . . . - . • .- .% ',- . - . - . . . .. .--- - .- .- .- - - - .. ...-. . . - . •
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has the matrix form

[] ]23 2

which in turn has the form (2.1) where

A = [1 2] X = [x Y] b [25 6
• 4 u v7 a

"~ " 123 24

Thus in viewing (2.1), it isn't necessary that b and X be

one-columnar matrices and A square, as is traditionally

. presented.

Lvoanov Equation. The linear matrix equation

(2.1) leads to the slightly more complex equation

AX + XB =C (2.2)

which is known as the Lypanov equation. In order for (2.2)

to be defined, the matrices A,B must be square (though

not necessarily of the same size) and the matrices X,C must

share the same size (though they may be rectangular). To

* . see why this is true, let the following hold:

MATRIX A X B
SIZE a X b c X d e X f

* For AX to be defined, b must equal c: b = c. For XB to be

defined, d a. AX is a X d and XB is c X f. For

AX + XB to be defined, a - c and d = f. Since b = c and

* a = c, a = b and A is square c X c. Similarly for B: d = e

and d = f and so e = f which makes B square d X d. It

follows that AX + XB is c X d which is the size of X.

* To illustrate (2.2), the system

2.2
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( x + 2u) + (5x + By + I1z) =14 (2.3)
( + 2v) + (6x + 9y + 12z) = 15

( z + 2w) + (7x + 1Oy + 13z) = 16
(3x + 4u) + (5u + Bv + 1 1w) = 17
(3y + 4v) + (6u + 9v + 12w) = 18

(3z + 4w) + (7u + lOv + 13w) = 19

has the Lypanov form

(A X + X B)

[1 21 [[x y ] + [ y z 1'"1 12 131

(C)
= 14 15 16]

17 18 19

Of course, (2.3) can be expressed as (2.1) by combining like

* terms, thereby creating six equations in six unknowns.

However, it will be seen (Chapter IV) that by solving the

Lypanov equation instead of its equivalent linear form

(2.1), solutions of a higher order matrix equation can be

derived, one in which the Lypanov is embedded. This higher

equation is known as the second-order Riccati equation.

Riccati Eguation and Higher. In high school

algebra, a student moves from solving the simple linear

equation bx = c to the higher order quadratic equation

* ax2 + bx = c (in which is embedded the linear equation

bx = c). In the present setting, the former equation is

-. likened to the Lypanov matrix equation and the second-order

* Riccati matrix equation to the quadratic. The Riccati

equation has the form

XDX + AX + XB + C =0 (2.4)

* For (2.4) to be defined, A and B must be square (possibly

2.3
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• 3not the same size), D must have the size of XT, and X,C

share the same size. The argument for this follows that of

the Lypanov equation.

To illustrate (2.4), the Riccati form of the system

xe + uy + 2x = -1 (2.5)
xy + yv + 2y = -2
xz + yw + 2z = -3
ux + vu + 2u = -4
uy + v2 + 2v = -5
uz + vw + 2w = -6

is

(X D X + A X)
x y I 01[X y z]+ [10 X y z +

Uv w[0 1u v w01u v w]
0o 0

(X B D - 0)

u ] w 1] 4 5 6 0

0 As with the Lypanov equation, there may exist many solutions

to the second-order Riccati equation. In fact it will be

seen in Chapters III and IV that the solutions of (2.4) will

satisfy pairs of equations determined by the matrices

A,B,C,D in (2.4).

As it is an easy matter to create a polynomial of a

given degree (e.g., 3x + 3x- - 7), so is it also to create

a higher order matrix equation. For instance, the third

order Riccati equation

XAXBX + XDX + AX + XB + C =0 (2.6)

or the related matrix equation

EXAXBXF + GXDXH + AXJ + KXB + C = 0

where the matrices not equal to X are known and so can be
2.4



* thought of as coefficients of a polynomial in x. However,

the non-commutativity of matrix multiplication gives the

placement of each coefficient matrix a decisive influence on

the solution.

A natural question that arises is whether or not a

given system has an accompanying matrix form. At present,

the only known way to answer this question is to experiment,

an understandably unattractive task. However, if a matrix

representation is derived (or stumbled upon), the concepts

presented in this paper will help to identify the solutions

to the given matrix equation, and thus to its underlying

system of equations.

Matrices Over a Ring. Two items determine the nature

U of a matrix: its size and entries. Concerning the latter,

a matrix is said to be "over a set S" if and only if its

entries come from the set S. For example if S = (1,2,3)

then the I X 4 matrix

A = 3 311 23

is "over S" because each of its entries belong to S. However,

* the 2 X 3 matrix

B = 2 3 (2.7)

• is not "over S" because B(2,3) = 0, which is not a member of

S. If however, S = (the real numbers) , then B is "over S".

Likewise, if

2.5
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IA 2 r+ 3i 71 (2.8)
"9 8 7i]

then A is not a matrix over the real numbers, but is a

matrix over the complex numbers. In this paper, the set of

complex numbers will be given by the symbol 4t (see the "List

of Symbols").

These examples lead to a notation used throughout this

". paper: given a set S, the set of all m X n matrices whose

entries are in S is symbolically given by

SM X " (2.9)

If A is an m X n matrix whose entries are in S, then the

statement "A is an element of S- 1 is represented by

A 6 Sm-X

Example: From (2.8), A 6 ¢z" because A is a 2 X 2
'0

matrix whose entries are complex. However from (2.7), B is

not in ¢=xO because B is a 2 X 3, despite the fact that the

entries of B are elements of the complex numbers (the set of

real numbers is a subset of the complex numbers). However,

The concept of "overness" will now be extended. Let

S(x) = (all polynomials in the variable x
with coefficients in the set S) (2.10)

Thus if S = (1,2,3}, then

* f(x) = x O + 2x + 3 E S(x)

because f(x) is a polynomial in x with coefficients in S.

* However

f(y) = y2 + 2y + 3

2.6
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-" .-. , is not in S(x) because f(y) is a polynomial in y. Likewise,

f(x) = 7x- + 2x + 3

is not in S(x) because the coefficient of xO is seven, which

s not found in S = (1,2,3}. It follows that 4(x) is the

set of polynomials (in the variable x) with complex

coefficients.

-, Similar to (2.10), let

S(x,y) = (polynomials in the variables x,y
whose coefficients are in the set S)

Thus if S = (4,5,21, then

f(x,y) = 4x 1 yO + 2x=y + 5x + 5y E S(xy)

because f(xy) is a polynomial in x,y with coefficients in

S. It follows that ¢(x,y) is the set of polynomials in the

variables x,y with complex coefficients.

In general, let r represent the n-tuple (xi,x2 ,...,x.).

Then given a set S, S(r) is defined to be the set of all

polynomials (in the variables found in r) with coefficients

in the set S.

Example: If r = (x,y,z,v,w), then (r) is the set of

all polynomials in the variables x,y,z,vw with complex

coefficients. Thus

f(x,y,z,v,w) = (4+5i)xO + xyzvw- (2+12i)w7 E ¢(r).

However if S is the set of real numbers, then f(x,yz,vw)

is not in S(r). U

Now to extend notation to matrices. Define

Sx"(r)= Cm X n matrices whose (2.11)
6 entries are in S(r))

2.7
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Thus if S = (1,2,4,8,91 and P = (x,y,z) and

A = [xlyz + 9z x8I
2x 4yz + 8z =-I

then A t SRxO() because A is 2 X 2, and each entry of A is

a polynomial in P = (x,y,z) with coefficients in S. However

if S = (1,2,4,8}, then A would no longer be in S-xz(p)

because a coefficient of A(1,1) isn't in S (namely, 9).

From (2.11), ¢mx-(r) is the set of all m X n matrices

whose entries are polynomials in r having complex

coefficients.

With this final definition, the object of this paper
6

can be stated: find the solution X tmx-(r) of the

third-order Riccati equation

XAXBX + XCX + DX + XE + F =0 (2.12)

given r the tuple of indeterminates in the polynomial

J entries of ABCDEF f CkXj (p) for kjmn of appropriate

, size.

One may feel that in (2.12), mandating X e (P) is

unduly restrictive. After all, forcing the solutions of

- 2 = 0 (a polynomial in x over the integers, i.e., a

polynomial with integer coefficients) to again be a

polynomial over the integers isn't possible, since -2 is

irrational. Also, given the matrix equation AX = b with

the entries of A,b integer and A square and invertible, it

may not be possible to have the solution X = A-Ib to again

have integer entries. Why then require X in (2.12) to have

entries in t(f) when (like these two analogies) it may be

2.e



I

necessary to leave ¢(r)? The argument is well posed, since

a given matrix equation may indeed not have a solution in a

given space. In fact, practical solutions could be missed

by restricting solutions for theoretical reasons.

The reasons for mandating X t ¢mx-(r) are in part

pragmatic. First of all, polynomial entries don't lend

themselves to singularities: X would be defined at all

values of r. This is important because given an entry that

is a rational function (e.g., 1/x), there may exist a

singularity or discontinuity at a value which in fact does

have physical significance. Because of the rational entry,

the form of the solution may prove untenable. Secondly,

many functions can be approximated by a series of

polynomials, e.g., Chebysev polynomials E5:2393. In fact,

computational considerations may force the analyst to use

polynomial approximations of a function. Restricting the

entries of X to (r) would help generate these polynomials

to be used in approximating the solutions to a phenomena.

The driving force, however, for requiring X f ¢-x-(r)

* is theoretical: is it possible to find some solutions in

the same space as the coefficient matrices in a given matrix

equation? If so, how would the solutions be obtained? It

* may very well be that solutions thus found may shed light on

the nature of solutions which lie outside the required

space.

A word needs to be said on the setting for addition and

2.9

o°



multiplication on matrices over 4(r). Though these

operations seem to hardly merit concern, there is

in fact an extremely important algebraic structure behind

them. Some of the current literature on matrix equations

refers to this "ring" structure of 4x-(r.).

In the broad setting, a set of objects S (e.g.,

matrices) is given, and two operations, + and *, are defined

(e.g., matrix addition and multiplication) between a pair of

elements of S. These operations have the property that if

a,b t S then: a + b , a * b k S and a + b , a * b assume

unique values (e.g., a + b has one value and one value

only). Operations with these closure and uniqueness

*, . properties are called binary operations. Depending on the

I nature of the operations, an algebraic structure (denoted by

<S,+,*>) is defined on the set S taken together with the

operations. For S the set of matrices over 4(r) and the

customary operations of matrix addition and subtraction,

<S,+,*> is known as a ring.

A ring <R,+,*> is a set R together with two binary

operations + and * defined on R such that the following

axioms are satisfied E7:1953:

R1. <R,+> is an abelian group.
R2. * is associative.
R3. For all a,b,c E R,

a*(b+c) = (a*b) + (a*c)
and

(a+b)*c = (a*c) + (b*c)

It is an easy matter to confirm that the operations of
I

matrix addition and multiplication satisfy the ring axioms.
2.10
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S,.Rank and Determinant of a Matrix. This chapter

closes by addressing two familiar properties of a matrix:

its determinant and rank. Both will be cited throughout

this paper.

The rank of an m X n matrix A (denoted by rank(A)) is

the number of linearly independent columns in A. Chapter III

will show that rank(A) affects the solution of the matrix

equation AX = b, where A,X,b are matrices over 4(r). In

finding rank(A), the determinant of a matrix will come into

play.

* Despite the many techniques which find the determinant

of a square matrix, later proofs will refer to the first

historical definition of a determinant, computationally

inefficient though it is. This definition, later referred

to as the "permutational" form of a determinant, derives its

name from its indexing (of matrix elements) on a permutation

of a set [26:893.

Given the set of integers S ( {1,2,...,N) a

permutation on S is a one-to-one and onto mapping T from S

0 into itself, and is represented by a 2 X N matrix whose

top row is S and whose bottom row is a specific permutation

of S. For instance, the two permutations of (1,2) are given

* by

( 2 ) and ( 2)

For S ( (1,2,3,4) one permutation is given by

2.11



- 1 2 3 4)

(where r(1) =2, tr(2) =4, TM) 3 and FM) 1) and

another by

r4 = 0:::)
where CM) 4, r(2) =3, 0(3) - 2 and r(4) =1.

If A CakJJ is an N X N matrix, then the

determinant of A is given by

detCA) E E sgn(p) ujj-a.FC3) (2.13)
pis

where

S is the set of all permutations on (1,2,...N)

* - and

sgn(p) t 1, depending on the number of transpositions
which comprise the particular permutation p E7:47-483.
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III Solvina the Linear Equation AX = b

The key to solving the Lypanov and Riccati equations

involves finding the solutions of the linear equation

AX = b (3.1)

As before, matrices may be non-square but entries must be in

Though the matrices of (3.1) may be rectangular, one is

first led to investigating properties of a square matrix

A t Vx-(r)--in particular, whether or not A is invertible.

As in the real case, if det(A) equals zero, then A has no

inverse. In general however, the determinant of A is a

polynomial over P and thus has an inverse except at the

roots of det(A). For example, if

x + y x
A y e"(x,y) (3.2)

,I y xyl

then

det(A) = (x + y)xy -xy =xy(x + y- 1)

and A has an inverse except in the root set of det(A)

C(x,y) : x = 0 or y = 0 or x + y = I}

If A must be invertible for all values of r (as will

soon be required), then det(A) can only be a non-zero

complex number. In this case A- ' is easily found using the

well known formula C26:963

A-= IAI- 1 [matrix-of-cofactors of A]T

That A-' j 4iX-(r) can be seen by recalling that the

- :cofactor of an entry aij of A is the determinant of a

"' 3. 1

0.



I

submatrix of A (obtained by deleting the i'th row and j'th

column of A). Because the entries of A are in 4(r), the

cofactors are also in ¢(r), and thus the transpose of the

matrix of cofactors is in 4"x-(r). Since det(A) is assumed

to be a non-zero complex number, so too will A!' which

implies A-& f t-x-(p). With this in mind, a specific form

of (3.1) can be solved for X: if A f t-x-(r) and

det(A) E 4 - (0) then there exists an A- ' f ¢Vxm(r) and

X = A-Ib (the general setting for the familiar result

involving real matrices). Finally, since the entries of A-1

4 and b are in (r), so too are the entries in their product

X - A-Ib as mandated in (3.1).

The picture becomes more complicated when A doesn't

have an inverse. This may be because det(A) = 0,

det(A) ( 4(r) -€ , or det(A) isn't defined, i.e. A

rectangular. Nevertheless, (3.1) may still have a solution

and in fact, may have infinitely many. However, before the

general solution of (3.1) can be derived, a more universal

setting for 'inverses' of a matrix will be addressed.

4 The basic concept here involves elementary row and

column operations on a matrix A f ¢-x"(r). Similar to

their counterparts for real matrices, elementary row

(column) operations on A are limited to:

1. interchanging two rows (columns)
2. adding a polynomial multiple of a row (column) to

another row (column)
3. multiplying a row (column) by a complex scalar not

equal to zero.

3.2
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As with real matrices, an elementary row (column) operation

on A t 4fxn(r) is equivalent to left (right)

multiplication of A by the corresponding elementary row

(column) matrix. For example, interchanging the rows of

(3.2) can be accomplished by multiplying A on the left by

1 00
obtained by interchanging the rows of I=x=. Another

example: multiplying the first column of (3.2) by x2 and

adding it to the second column can be accomplished by

multiplying A on the right by
I 1 1 xM

0 1

obtained by multiplying the first column of I=xm by x- and

adding it to the second column. Again, as with real

matrices, the determinant of an elementary matrix over (r)

is a nonzero complex number, and thus the elementary matrix

always has an inverse. It is for this reason that the third

elementary operation is limited to multiplication by a

scalar for if polynomial multiples were allowed, the

*determinant of the resulting elementary matrix may be a

polynomial with degree 1 1. The matrix would then fail to

have an inverse at the roots of its determinant. A square

o matrix whose determinant equals ±1 is called unimodular, and

so is invertible.

Both elementary row and column operations are used on A

to find the general solution to (3.1). Though two different
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cases must be considered--A does and doesn't have constant

rank--both follow the same approach: find unimodular

matrices P and Q that reduce A to a form yielding the

general solution of (3.1). The two cases will be analyzed

separately.

AX = b. rank(A) constant. The aim here is to transform

A 4 ¢"x" using elementary operations, into the m X n matrix

[
I 

F1
X

F Opp XM-0l

At = 1 (3.3)

where p is the rank of A. The main question thus

* becomes,"What are the unimodular matrices P and Q such that

PAQ - A,?" Once P and 0 are found, the general solution of

(3.1) will follow, as this chapter will show. That such P

0 and 0 do exist wa; recently proven by E. Sontag [31]:

THEOREM 3.0 (Sontag): The following statements are

equivalent for a matrix A = A(r) over R =(r):

a. There exists a matrix B over R such that
ABA - A and BAB = B. B is called the weak
generalized inverse (or the (1,21-generalized
inverse) of A.

b. There exists square unimodular matrices P and 0
over R such that A, = PAO.

c. As a function of the the complex variables
r = (r 1 ,...,r'), rank(A) is constant.

Proof: See [31]. U

A method for determining P and 0 has been developed by

Dr. John Jones Jr., AFIT, and works by keeping a

cumulative' record of all the elementary row and column

operations performed in reducing A to A,. The "Jones ST
3.4



Method" begins by forming the matrix

[Amx. Imxm]
Am =" IO Xn (3.4)

Subsequent elementary operations are done on Am until A

becomes A,. Once this point is reached, the matrix

occupying the I..x. block is P, and the matrix occupying the

I,.x., block is Q. That these two blocks do indeed contain P

and 0 is easily seen: P and 0 will be the respective

products of the elementary row and column transformations

done in reducing A to A,; since Imxm is row adjacent to A, P

*will be the left multiplier of A, and since I~x. is column

adjacent to A, 0 will be A's right multiplier. Also, both P

and 0 are invertible, since their determinants are nonzero

complex. To see this, consider P R, where the R,'s

are the elementary row transformations done in reducing A to

A2. It follows that

det(P) = det(u R,) = n det(RI)

Since each det(R1 ) is non~ero complex (the nature of an

elementary matrix), so will their product be, and thus

* det(P). A similar approach holds for Q.

Examole: Reduce to the form of (3.3) the matrix

A 3 6*X3(x,y)
•0 0 1

Begin by augmenting A by the identity matrices Ix= and

I3X3 to form per (3.4)
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1 x y 1 0
0 0 1 0 1

S1 0 0
0 1 0 O x=
0 0 1

The next step is to get an identity matrix in the upper left

hand corner of A, per (3.3). First, interchange the second

and third columns to form

1 y x 1 0
0 1 0 0 1

1 0 0
0 0 1 O3x
0 1 0

Next, add -y times the second row and add it to the first to

form

1 0 x 1 -y
0 1 0 0 1

1 0 0
0 0 1 03x=
0 1 0

Next, add -x times the first column to the third column

... obtaining

1 0 0 1 -Y
0 1 0 0 1

* 1 0 -x
0 0 1 Ox=

0 1 0

The process is now comolete since A has been reduced to the

* form of (3.3). The P and 0 elementary row and column

matrices are read off to be

P = c JP and Q2= 0 0 10 10 I1 0 1 0

3.6
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Thus

PAQ =
0 1 0

Since det(P) = I and det(Q) = -1, P and Q are unimodular and

hence invertible. U

The above example illustrates a theorem helping to

* -identify the general solution of (3.1) for A of constant

rank:

THEOREM 3.1: Let A f 1Xw(r) and rank(A) = p a

constant. If P and Q are unimodular and

i. ~ ~~~AQ= Ix Op- ]
PA:.=. 0,m-,px, Om-pXn-, J

where

P = E ¢xm(r) Q = IS N] E CX.(p)I

T 6 4I3x-(j) ,M 4 mPC-)~ 5 E-XR(P),

N n

then

[ I. is similar to [I,.. o.._F Toxm]

Sn x,, Nn n-,=Or, X,

::,oI= [(PA).x, PrAxn] [ QXm rxrnj

(PAQ)mx, Pmxm 1  (from given and)

Q mxr O-xm (substitute for P & Q)

3.7
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Om-pXM OM-pxu--p M-F

S.xp NXr-s OrXm

Since P and 0 are unimodular,

[mXM OMX.] and [Q0xr OMX.
O"XmI Ix O.xb Imx..

are also unimodular and thus invertible. This is seen by

noting that if A and B are square matrices, then

det [ ] = det(A) * det(B)
1:0 B

a consequence of the permutational definition of a

* determinant (2.13). U

Examole of Theorem 3.1: Let

A = x y x + yi ;x= y xy Y:2x y + xy:2 + x y

Matrices P and Q are sought that reduce A to the form (3.3).

First, augment A by the identity matrices Izxm and Ix to

o get

x y x= + y + 1 1 0

x=y xY0 X-y + xy: + xy 0

1 0 0
' 0 1 0 O x2

0 0 1

Next, add -xy times row I and add to row 2 to obtain:

x y x + y + 1 1 0

* 0 0 0 -xy I

1 0 0
0 1 0 O xma
0 0

Next, add -1 times column 2 to column 3 to get:

3.8
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-. 5*s x y x = + 1 0
V. 0 0 0 -xy I

1 0 0
0 1 -1 OsxZ=

0 0 1

Now add -x times column 1 to column 3 to obtain:

x y 1 1 0
0 0 0 -xy 1

1 0 -x
0 1 -1 Osxz
0 0 1

Switching columns 1 and 3:

1 y x 1 0
0 0 0 -xy I

-x 0 1
-1 1 0 O=x=

1 0 0

Adding -y times column 1 to column 2, followed by -x times
1 00

column 1 to column 3 yields:

1 0 0 E1 0 T >>T
0 0 0 C-xy 1 ] >> M

-x xy 1 + x=

-1 1+ y x O=X=
1 -y -x

^- \ /

S N

Since A has been reduced to the form (3.3), P and 0 have

been found, and thus S,T,M,N of Theorem 3.1. It's easy to

verify the unimodularity of P and 0. U

The groundwork is now in place to identify the general

form of the solution to (3.1). The following theorem is due

to Jones (11]:
3.9
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THEOREM 3.2: Let A trx(,)of constant rank p and

b etmX (r). Then AX =b has a solution X 6 t-X~(P) if

and only if Mb = mx~ M given in Theorem 3.1. The

general form of X is given by

X -STb + NZ

S,T,N as given in Theorem 3.1, and Z ot -,~(r) arbitrary.

PROOF: Let P E I-x-rn~) and 0 E rx (r) be

unimodular matrices such that

PAD I~~

*as given in Theorem 3.0. Then AX = b has a solution X
iff

PAX = Pb has a solution X (by virture of the unimodularity
of P and hence the existence of P-1)

if-f
PA(00-1 )X = Pb = (PAQ)(Q01 X) has a solution X (since 0 is

10 unimodular, there exists 0-1)
iff

(PAQ)Y =Pb has a solution Y = 01 X (3.5)

Let

Y = W x,] , P = Tg~x-x , 0 Sr~x, Nrxp3~~

Then substituting for PAQ, P and Y in (3.5):

rFX OpXu"-g mp M-R II [T] b

rw~ [Tb 1 (3.6)
0 m-.ix~j Mbj

Since Y = 0 1 X from (3.5),

X=OY=ES NJ [W] SW +NZ = STb +NZ

Not* that (3.6) allows Z to be arbitrary since Z is zeroed

*out by the second row of PAO. (3.6) also says that if a
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solution exists to AX = b , then Mb must equal O.-X.

This mandate is referred to as the 'consistency condition'.

EXAMPLE (THEOREM 3.2):

Given

A =rx Y xO + y + 1
xYey xy xy +xym + xyj

b x + xy + y + xzy + y2 -
[x=Y + xY + X=Y = + x=yM + xy

solve AX = b.

The example for Theorem 3.1 (which reduced A) found

that

T = [1 03 , M = E-xy 1]3 S = E-x -1 1]t

and

[ xy 1 + x]

It is a simple matter to show Mb = 0 thereby confirming

the existence of a solution for AX = b. From Theorem 3.2

it follows that the general solution is

X = STb + NZ =

r-X 2 -xoy- xy - x y - xy2 Y+ x]-x - xy - y - X"Oy -  Y=/ at+y| + /x
x + xy + y + x=y + a:2 -y j L -x

where a,1 E ¢(xy) U

A benefit of Theorem 3.2 is that it easily identifies

the basis for the kernal of the linear transformation

represented by the m X n matrix A, a task generally qu..te

tedious. Recall that the kernal of a linear transformation

3.11
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represented by the matrix A is the set

Ka - { X : AX = 0 }

To find the basis of K^, one must solve the equation

AX =O,,x

which is a special case of AX = b where b = Ox From

Theorem 3.2, it follows that

X - STb + NZ = STO.x 1 + NZ = NZ

Thus the span of the columns of N is K^. However, since

0 = ES NJ and 0 is unimodular, the columns of 0 are

Klinearly independent, and thus the columns of N. Since the

* columns of N is a linearly independent spanning set of K^,

it follows that the columns of N are the basis for the

kernal of the linear transformation represented by the

• matrix A.

AX = b. rank(A) not constant. Consider the following

matrix A * ¢x"(x,y,z) which doesn't have constant rank:

x 0 0]

A = y 0 (3.7)" 0 0 z

Rank(A) ( {0,1,2,3) , depending on the values assumed by

(x,y,z): if x = y = z = 0, then rank(A) = 0; if x,y,z 0,

then rank(A) = 3; if two are 0 while the third isn't,

rank(A) = 1; if two aren't zero while the third is, then

* rank(A) - 2. This section addresses the solution of the

equation AX b given rank(A) not constant.

A result similar to Theorem 3.2 holds for such a

matrix A. The approach is practically identical to the

3.12
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constant rank case: find unimodular matrices P and Q which

reduce A to the form

PAQ = , p . 1 (3.8)

where p is as large as possible and A m-x--(p). As

before, P and 0 are found using the Jones ST Method. If

- such P and 0 are found (they may not exist), the following

theorem applies:

THEOREM 3.3: Let A E 4mx(r) If P and Q are

unimodular and

mEI P I¢X$2 OF. XM b-$a

0 >" PAQ =

O.-0px A.-p xr-ppi

where

P (T[] E=x(), Q = s N3

T 4 *OX.(p) M 4 -- 'w(p) , S ¢xPlr),

N ( ¢rxr-p(f) , A -

*] then

A I mXm] is similar to rIpp3pp OppXu,-: Tp, xn
IOx. O.-pxR Am-x-s, M"-Mxpj
S"xp Nnx,%-g* Ot jX J

* PROOF: identical to that of Theorem 3.1. E

Once P and 0 have been found, the following theorem is

applied:

*'-" THEOREM 3.4: Let A E I-x-(r) and b * *mx-(r). Then

° - AX = b has a solution X f ¢x'(r) if and only if there

* .- * exists a Z ( '-.v(p) such that Mb AZ MA given in

Theorem 3.3. In this case, the general form of X is given

3.13
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by

X = STb + NZ

for all Z such that Mb AZ and S,T,N given in Theorem 3.3.

PROOF: Let P 4t-x-(r) and Q E ¢-x-(r) be

unimodular matrices such that

pAQ = [~I.xP 0Xp"- 3
PA O.-- *

AX = b has a solution X
iff

PAX = Pb has a solution X (by virture of the unimodularity
* of P and hence the existence of A-')

iff
PA(Qg-')X = Pb = (PAQ)(Q-'X) has a solution X (since Q is
unimodular, there exists Q0-)

0; iff
(PAQ)Y = Pb has a solution Y = a-X (3.9)

Let

Vi l= p := [T~I:x
m

n

and

- = [S,-,xs N-x -

Then substituting for PAQ, P and Y in (3.9):

[I IMXi 0upof-w- ] [W] [ T] b

Sw] [Tb (3.10)

LtZJ LMbJ

Since Y =Q-X,

X =Qy S N] rW] - SW+ NZ = STb - +NZ
LzJ

subject to

AZ = Mb (3.11)

per (3.10). This latter mandate is the consistency

K ' -. condition. That Z E ¢-x (p) proceeds from (3.9): since
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"." - Q has polynomial entries and is unimodular, so too is Q-'

Since X is also required to be in ¢-x1(r) the product of

Q-1 and X must be in ¢-x (p). Since Z is a submatrix of

Y = Q-1X , Z 4 ¢,-x..(r) i

In general, there is no assurance that the consistency
4

condition (3.11) can be met for a given equation AX = b:

though A may be reduced to the form (3.8), there may not

exist a Z OVER 4(r) satisfying the consistency condition

AZ = Mb. It may be necessary to leave ¢(r) in order to find

a Z satisfying the consistency condition, an act contrary to

* this paper's aim.

What then can be said about the solvability over 4(r)

of AX = b when rank(A) isn't constant? It's possible that

* A isn't reducible to the form (3.8). For instance the

matrix in (3.7): reducing A to the form (3.8) implies that

A has a rank no less than p (the first p columns of (3.8)

*are linearly independent despite the form of A). However,

the rank of A may be zero if x = y = z = 0 , and so A isn't

reducible to the form (3.8).

, This example, however, is symptomatic of a larger

problem. Assume that a given matrix A has been reduced as

much as possible (no known method exists that insures

maximum reducibility of a matrix over 4(r), r arbitrary),

i.e. the maximum value of p has been found. One is then

left with finding a Z satisfying the consistency condition.

A in turn cannot be reduced, since this would violate the

3.15
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assumption that A has been reduced as far as is possible.

If A is square, det(A) cannot be a nonzero complex number

(if it were, rank(A) = m - p and A could be reduced to

""-" I-=x.-:P thus giving A constant rank, a contradiction). If

det(A) : 0 repeated use of Cramer's rule may identify some

solutions Z, but these would be local since the roots of

- det(A) must be omitted. In general, however, f will be

rectangular.

Thus finding the general solution of (3.1) given

rank(A) not constant ultimately requires solving (3.11)

* where A cannot be transformed into the form (3.8). The

search for Z may be aided by matrices related to A, the

topic of the next section.

* SMITH FORM OF A MATRIX. A matrix A ¢xm(r) is said

to be in Smith Form (SF) if and only if

0

A Ojx"-j (3.12)
0 f

Om-JXJ Om-JX-j

where all off diagonal entries equal zero and fk is a factor

0 0

A 0 x~y 0 4 3 x (xqy)
10 0 x -yem

is in SF (3.12) because all off diagonal entries are zero, x

is a factor of x2y, and x-y is a factor of x yO. Another

example is
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I

A = 0 x(x+1)] x|0 0

which is in SF (3.12) because all off diagonal entries are

zero, and x is a factor of x(x+l). The solving of matrix

equation (3.1) may be aided if A can be transformed (using

unimodular matrices P' and Q') into a matrix having SF. In

fact, Smith Forms have already appeared: (3.3) is a special

case where fk= 1 , k 1 p The main aim here is to use

SFs to solve the equation (3.11) AZ = Mb of the last

section.

* To illustrate, assume that in solving AZ = Mb (derived

from some hypothetical original equation AX b),

unimodular matrices P' and 0' have been found that give

P'AQ" a SF. Thus

AZ = Mb
P'AZ = P'Mb

P'4(0'Q'-)Z = P'Mb
(P'.Q') (Q'-z) = P*Mb

Letting

-',Y =Q'-1Z

H = P'Mb
F = P'.AQ' (3.13)

I

the last equality becomes

FY = H

Since F is in SF, there exists at most one nonzero entry in
I

each row and coiumn of F. Because F and H are known, some

entries in Y can be found by dividing the respective F and H

factors (if however a given entry of Y isn't compatible with

two or more equations, or if the entry doesn't turn out to
3.17
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",c ,. be a polynomial, then AZ = Mb has no solution Z.)

Depending on the structure of F, there may be entries of Y

which can assume arbitrary values. Y is then substituted

into (3.13) to yield Z = Q'Y , thus solving (3.11) and in

turn (3.1).

Given A 4 -1'(r) , if there exists unimodular

matrices P' 4 ¢mxi(r) and Q' * ¢'-(r) such that

A' = P'AQ' is in SF, then A is said to be equivalent to its

Smith Form. It has been proven [1:1883 that for every

A f ¢-rx(X), A is equivalent to a unique Smith Form (an

* algorithm exists E1:1923 which finds this). However, such

is not always the case for multi-dimensional r. In fact,

Lee and Zak [203 prove that a matrix A J ¢mxI(x,y) is

equivalent to its SF iff a tertain system of linear

polynomial equations has a solution. The conditions under

which a matrix in three or more variables is equivalent to

its Smith Form remains an open question.

Although the existence of a SF for a given matrix A

must be known before a search for it can begin, a method is

needed which identifies the unimodular P' and Q' which

yield a particular SF of A. As before, the Jones ST Method

can be used.

EXAMPLE: Find the Smith Form of the matrix (Frost and

Storey [81)

A +s + z 0 1

0 0 s
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Begin by augmenting A with Imxm:

s +z 0 1 1 0 0
0 s + z 0 0 1 0

0 0 s 0 0 1

1 0 0
o 1 0
0 0 1

Next, add -(z + s) times the third column to the first

column to get:

0 0 1 1 0 0
0 s + z 0 0 1 0

-s(s+z) 0 s 0 0 1

1 0 0
0 1 0

-(s+z) 0 1

Add -s times row 1 to row 3 obtaining:

0 0 1 1 0 0
0 s+z 0 0 1 0

-s(s+z) 0 0 -s 0 1

1 0 0
o 1 0

-(s+z) 0 1

Finally, interchange the first and third columns:

1 0 0 1 0 0
0 s + z 0 0 1 0o. 0 0 -s(s+z) -s 0 1

* 0 0 1

0 1 0
1 0 -(s+z)

Since the upper left hand matrix is in Smith Form (i.e.,

S1 is a factor of s + z, in turn a factor of -s(s + z) and

- -off diagonal entries are zero)

"-.. " = 0 1 0" 0 I 0

P 1-s 0 1 1 0 -.(s+z)l

3.19
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-: arm the two unimodular (easily verifiable) matrices which

reduce A to its Smith Form. U

3.2



0[

IV Solutions to Lypanov and Riccati Equations

This Lhapter will consider the solutions to the Lypanov

matrix equation

AX - XB = C (4.1)

and the second order Riccati matrix equation

XDX + AX + XB + C =0 (4.2)

where the entries of A,BC,D are in J(P). It will be shown

that solving these two equations for X hinges upon solving'

equations of the form AX = b the subject of Chapter III.

"* Lypanov Equation. (4.1) may be solved using tensor

products or similarity transformations. The former

approach will be addressed first because it uses the results

of Chapter III at the onset. The approach using similarity

0 transformations will then be presented as a lead-in to

solving the Riccati equation (4.2), whose solution relies

exclusively on these tranformations. Whichever method is

taken though, the linear equation (3.1) will demand

resolution.

Lvoanov Equation: Tensor Solution. Multiplication

between two matrices is easily extended to that of their

tensor product. Given A = [a*] the tensor product of the

matrices A and B, represented by AAB, is given by [ajB].

Unlike matrix multiplication, the number of columns in A

doesn't have to equal the number of rows in B.

4.1
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" Example: If

A =[1 2 31 and B =[1 1]

then

A&B atjB [ 1 2B 3B]A'D B 5B 6B

1 2 24 36
a4 X 6

24 4 5 5 6

4 8 5 10 6 12

It follows that if A is m X n and B is r X s, then AAB is

mr X ns. U

The next step in solving (4.1) is to identify the

solution of the equation

AXB = C (4.3)

where At., denotes the i'th row of A and At. its i-th

column (the i-jth entry of A is given by ajj with no comma

between subscripts).

THEOREM 4.1: Solving the matrix equation

AmxnXmxaBxc = Cmxq

is equivalent to solving the equation

Gu = c

where

* .' 6 = AaB- , u = [Xt.w...Xr.]' , c =

PROOF: Let A : Ca.JA , B = Er J ,

C = .c, X = x~ j

Since AXB = C ,

4.2
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SCxi = .,XBj
= A.*- CX%..Bj . X... X.Bj.=]T

-k I. a X k EL.. X ,_. )

- EL(aX1 8L..JxlL_) + *** + r-(a z x,.-)
= aXEL-(BL.Jx ,) + *of + aX,-L.(fJxr',-)

- x E3. . . sm . .. ax1 U 1 .r13,J 3 J
* I X1  X,.. , T

-= az xB'r., . ... azBTrj..3
* EX, • X,,,]- (4.4)

Since c = ECI., C-. ] is given and from (4.4), the

theorem follows. U

The following theorem is due to P. Lancaster [1B]:

Theorem 4.2: Given the matrix equation

A1 XB1 + AXBm = C (4.5)

where Ax are m X m , Bx are n X n , X,C are m X n (with Xx

and Cx the rows of X and C respectively), (4.5) is equivalent

to solving the equation Gx = c where

8 = AIaB1 T + A=ABT
x = [Xi...X.] "r

c = [Ci ... C.]T

Proof: Similar to that of Theorem 4.1. U

The restriction on square Ax and B, in Theorem 4.2 is

easily modified to include rectangular matrices. With this

modification, Theorem 4.2 allows for the solution of the

Lypanov equation (4.1) which is a special case of (4.5) with

B, = I and A= = -I. Once a given Lypanov equation has

been reduced to an equation of the form AX = b using

tensor products, the results of Chapter III can be applied to

this latter equation.

Examole: Solve the Lypanov equation

AX + XB = C = AXI + IXB
4.3
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where

A sz _!z] _ -2 21
sz S=

* =[2s=-2z--sz 4sz-2z=-3sz]

= xz (4.6)

The first step is to reduce the given Lypanov equation

to the form Gx = c so that Theorem 4.2 may be used. Thus

G=AI-r. + I&B-

5~ -

* . 5 Z I v0 oil +~ [ oil [2- 23-z=
S+z 0 s 01- -z-s 0 0

0 -z A] S -

s -s s 0 1
-s 2s -0 2szI

o s-2z -z -s

Let x = Cy z v wJTr and

c = Esz S.2 2s=-2z--sz 4sz-2z=-3s=3T. Thus the

solution

*to the given Lypanov equation is the solution to the

linear equation
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s -z-s s  s
,, "' -s 2s 0 s [s]

s:2z -zJ-s [ 2s-2-2z-sz
0m z -s -2s-2z L4sz -2z -3sml

Depending on the nature of the 6 matrix obtained using

tensor products, the given Lypanov equation may or may not

be easily solvable. For instance, if 6 cannot be reduced to

the form (3.3), one then tries for form (3.8). Here

however, finding the Z's satisfying the consistency

condition (3.11) AZ = Mb may be difficult. In any

event, the use of tensor products creates a large matrix 6,

0 thereby compounding calculations.

The second approach to solving the Lypanov equation

" (4.1) uses similarity transformations. Although this method

may not explicitly identify the solution to (4.1), it will

identify a set of matrices within which the solutions of

(4.1) will be found.

Lvoanov Eouation; Solution via Similarity

Transformations. The second approach to solving (4.1)

proceeds from a few simple observations unrelated to solving

a matrix equation. Given an n X n matrix X and I = I.x,. the

matrix

* E = (4.7)
: 0 1

o ,

always has det(E) = I despite the nature of X (this follows

from the permutational definition of a determinant (2.13).

" Since E is unimodular, it has the unimodular inverse
4.5
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E [0 1 (4.8)

which is verified below:

EE 10c 1 0~ 1 = 1 E +x I-O + 101[)
* ~(E'E =,x= likewise follows). -x+-U

- The next observation uses the matrix

R [A C ] (4.9)

where A,B,C are all nXn matrices:

0, RE- = I X] [A C] [I X] =[A C+XB] [I X]

[ A -AX + C + XBI (4.10)

10 B J

0The above two observations can now be brought together

to solve (4.1): the 1-2'th entry of ERE above is itself a

Lypanov equation. If it equalled zero, then X would be a

0 solution to the equation

-AX + XB + C -0 or AX - XB = C

which is of the form (4.1). The following theorem due to

Jones C113 has now been proven:

* Theorem 4.3: If X is a solution to the Lypanov

equation

AX- XB =C

where A,B,C,X 4E (r~[) then

4.8



R =[ ] is similar to R' (4.11)

Proof: previous discussion. U

The following more powerful theorem was proven by Roth E303

f or matrices whose entries are complex numbers:

Theorem 4.4: If A,BC 6 4-- then AX - XB =C has

a solution X 4 *~ if and only if R and R' in (4.11) are

si mil1ar.

Proof: See E30]. M

Although Theorem 4.3 is the core result leading to a

solution of (4.1), the final assault upon (4.1) will use

polynomials of a matrix. For this reason, the following

theorems are presented.

Theorem 4.5: Let A,B be n X n matrices such that B-1

exists. Then for n EZ-

(BAB-')- BAr-B-1L (4.12)

*Proof: Inductive reasoning will be used. (4.12) is

trivially true for n =1. For n =2,

(BAB')-= (BABL) (BAB-1) =BA(B-1B)AB-1
0 = BA(I)AB- - BA-B-1

and (4.12) is again true. Assume (4.12) is true for n =k

Thus

(BAB-1)k -BA-B-1

and so

(BAB'1)'- = (BAB-l)k(BAB-1) = BAk B-l(BAB--)
= BAk(B-lB)AB-1 = k-B1

* and so (4.12) holds true for k + 1 and therefore for all

4.7



*. . positive integers. 0

Theorem 4.6: Let f(x) be a polynomial in the

variable x. Let AB be n X n matrices such that B-" exists.

Then

f(BAB- ) = B f(A) B-1

Proof: Let f(x) = ao + E-,.,. aKx K  Then

f(BAB- •) = a-1 + EaK(BAB-)K = (from Theorem 4.5)
= aoBB-1 + EaBA-B- 1
= BaoB- • + B (Ea.AK ) B- 1

= B (aI + EaKA ) B-1

B f(A) B-1

Theorem 4.7: Let

S[ A 0
- R=lB C

A,B,C nXn matrices. Then for K j Z

RK  [ (4.13)

* an expression in AB,C.

Proof: Inductive reasoning will be used. (4.13) is

trivially true for i = 1, where * = B = OA + 1B +OC

For i = 2

S [A 0] [A 0] [Am 0

1B C B C BA+CB CO

and (4.13) holds true again. Let (L 13) be true for n - k

* Then

R R = [Ak 0 [k RJ = [Ak -k

* and thus (4.13) is true for all positive integers. U

4.8
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Theorem 4.8: Let

R 01[
A,B,C nXn matrices. If f(x) is a polynomial in x, then

f(R) - [A)fCC)] (4.14)

*an expression in A,D,C

Proof: Inductive reazoning will be used. Let

f(x) =ao +-r-.,ax For n = 1, f(R) =a 0 + aR=

a0m 1I 0] + a, [A 0] = [aol + aA a 0  aC

= [f(A 0 C)

where

*=aB aB + OA + OC

and so (4.14) holds.

For n = 2, f(R) = aoI + aR +- a=R-

=aO 1i 0] + a, [A 0] + am [AO 0OJ (from Theorem 4.7)

I ao + a, A + a=A= 0o ~ a2

aoI + a1 C + aC

=[f(A) f0Cj

and (4.14) remains true. Let (4.14) be true for n =v

If fi(x) = E ao + Zk1..1akXu 3 and

f (x) = -f1 xW + a,..x--L- then

f(R) = fi(A) 0 + a.R"

=f.(A) 0] a., A-1  0~~'' C~x
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L

[-F, (A) + aA"' 01
L * f1 (C) +

= [f(A) ]
* f (C)l

and so (4.14) is true for all positive integers.

One more theorem remains to be cited before the assault

on (4.1) can begin. The Hamilton-Cayley Theorem will permit

.- the identification of a pair of linear equations whose

common solutions will contain those of (4.1).

Theorem 4.9 (Hamilton-Cayley): Given A an nXn matrix

and T(Y) = det(A - yl.x) the characteristic equation of A,

then

I(A) = 0,x,

Proof: see Nering [26:1003 0

n The tools are now in place with which to solve (4.1).

The following theorem is due to Jones [113:

Theorem 4.10: Given the Lypanov equation

0 AX - XB = C A,B,C 6 ¢'11(r) (4.15)

let R and R be defined as in (4.11) and f. the

characteristic equation of A. If

f, (R) = (4.16),"I V N

then

U + XV = 0 (4.17)
M + XN = 0

Thus a solution to (4.15) will be found among the common

* solutions of the pair of equations (4.17).

K 4.10
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Proo,': From the discussion preceeding Theorem 4.3, it

was seen that
ERE-' = I X] [ A C] [I -Xl 1[A 0] R

10 1 0 BJ 0 1 LO BJ

for X satisfying (4.15). By substitution,

f^(ERE-1 ) = f,(R') (4.18)

From Theorem 4.8,

fmlR') = [f (A) 0B]* f, ̂  B)l

0 f0(B)] (Hamilton-Cayley Theorem 4.9)

From Theorem 4.6

f (ERE - 1) = E f (R ) E - I I [ f [ U M I [ - XI

S[U+Xv M+XN] [ _X]

-'= U+XV -(U+XV)X + (M+XN) (4.19)
I V -VX+N I

= f(B)] (from (4. 18 ) (4.20)

Since two matrices are equal iff respective entries are

equal, the 1-Ith entries of (4.19) and (4.20) imply

U + XV =0 (4.21)

S and the 1-2th entries imply

0 = -(U + XV)X + (M + XN)
= OX + (M + XN) (from (4.21))
=M + XN

Thus a solution of (4.15) will satisfy the pair of equations

(4.17). i

The example used to illustrate the tensor solution to

"S (4.1) will serve to illustrate Theorem 4.10:
4.11
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Examole Theorem 4.10: Solve the Lypanov equation

AX + XB = C (4.22)
= AX - X(-B)

where

!=A = 7 B = K 5  I"- 
Z S-- -- Z - S--

C 2:S-2z--sz 4sz-2z 2 -3sI

From (4.11),

R =A Ci = ~ s szz~
10 -z sz 2 s-2z-sz 4sz-2z -3s =I

0' 0 z s

0 z+s z-s

Next, find f (p), the characteristic equation of A.

f^(V) = dint [5+ z -

= (s+z-P) (s-z-J) - sz
= So - sz - s13 + zs -ze -zV -Ps +jYz + P - sz
= Sm - SZ - Z 2 + P-- - 2sp

Now evaluate f^(R) (this was done using the program in

Appendix A, a BASIC program performing operations on

matrices whose entries are multivariate polynomials):

*f^(R) =O0 -Z + W5~ -5s' + 7 s 2tz - 2sz:2
0 0 5sz = - 5s- -2z- + 2s=z 2sz2 + Bs- - 8s-z
0. ' 0 2sO - 2sz -3s' + 2sz

-"0 0 -sz - 3sO + 2z- 5sO - 4sz

VN]
According to Theorem 4.10, the solution to (4.22) will be

found among the common solutions to the pair of equations
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U + XV = 0 (4.23)
M + XN = 0 (4.24)

Since U = V = 0, (4.23) doesn't contribute to the solution.

So the search restricts itself to solutions of the equation

M = -XN or

s=z + 3s,3 -5s3 + 7s=z - 2sz l

5sz - 5s* -2z- + 2s=z 2szO + 8s- - 8s-zJ

Nw X] [ 2 - s 3 : 1 - 2 : z lLy z sz + 3s = - 2z- -5s = + 4sz

However, in order to apply the techniques of

Chapter III, one must have an equation of the form

AX = b

* It is an easy matter to convert (4.24) into the form of

(3.1) by observing that M = -XN implies MT = -N T XT This

latter equation is in the form (3.1), and the techniques of

Chapter III can be applied to this transposed equation. U

It is possible to further restrict the set of equations

within which the solution of (4.15) belongs:

Theorem 4.11: Given the Lypanov equation

AX - XB = C ABC n

let R and R' be defined as in (4.11) and fa the

characteristic equation of B. If

-F a(R) = [ 21
then

N - VX = 0 (4.25)

M - UX = 0

• Thus a solution to (4.15) will be found among the common

4.13
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solutions of the pair of equations (4.25).

Proof: The proof is similar to that of Theorem 4.10.

From the discussion preceeding Theorem 4.3, it was seen that

ERE-'= [I X] [A C] [I -X] = [A 0] =R

for X satisfying (4.15). By substitution,

fe(ERE-1 ) = fo(R') (4.26)

From Theorem 4.8,

fiN(R') = [fo(A) f0B)]

= [8f(A) 0] (Hamilton-Cayley Theorem 4.9) (4.27)

From Theorem 4.6

f.(ERE-1) = E f (R) E- I = [I X] [U M] [I -X]

=;[U+XV M+XN] [I X]

U+XV -(U+XV)X + (M+XN)l

I [Xv -VX+N I

= u+xv X(N-VX) + M - UX] (rearrange 1-2th
IV N - VX entry) (4.28)

= [fa(A) 0] (from (4.27)) (4.29)
1* 0

the 2-2th entries of (4.28) and (4.29) imply

N - VX = 0 (4.30)

and for the 1-2th entries,

0 = X(N-VX) + M - UX
= OX + (M- UX) (from (4.30))
M - UX

Thus a solution of (4.15) will satisfy the pair of equations

(4.25). U
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The example for Theorem 4.10 will serve to illustrate

Theorem 4.11:

Example of Theorem 4.11. From (4.22) begin by finding
the characteristic equation for

-B -[ s
-B Z+S Z-S

f- (Y) = det(-B- 3I) = det [Z+P z-s-3S]

(z-u) (z-s-3)) - s(z+S)
z= - zs - zP - Pz + Ps + PO - sz -s

= (z = - s - 2sz) + (s - 2z)J + ji

Using the program in Appendix A, f-a(R) =

S =  3s'-2sz -2sz2-+2s-z+3s3 5s~z-2s--2sz- J
-2z'+3sz 4z5-sz+sM -5s~z +2z -+s-+sz= -12sz =+4 +lOs~z-s-]0 0 0 0

= [v N']
The pair of equations which need to be satisfied are

N - VX = 0 (4.31)
M - UX = 0 (4.32)

* (4.31) doesn't contribute to the solution, and so the

solution to (4.15) will be found in the solution space of

(4.32) M = UX or

r [-2sz-+2s-z+3s- 5sz2s2sz ]
::.:" _5s~z+2z 5+sz+sz- -12sz=+4zz5+10s=z-sz

- [2z-+3sz 4z-6sz+s=J[ z] *

* To summarize, given the Lypanov equation

AX - XB = C A,B,C,X 6 C-(P)

and

4.15
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R B

and f.(p), f.(p) the characteristic equations of A and B

respectively, then X will be a common solution to the pair

of equations

M = -XN
M" = U'X

where

f,%(R) = U M] and fa(R) = [U M °

IV N V N'

Riccati Equation. Attention will now be turned towards

(4.2), where AB,C,D,X E I-x-(r) As with the Lypanov

equation, a few insights (not necessarily connected with

solving the Riccati equation) will serve to motivate

the techniques used to solve (4.2).

If X is an n X n matrix and I = I,x,, then the matrix

E [ (4.33)

always has a determinant equal to -1 (this follows from the

permutational definition of the determinant), and is thus

uni,dodular. E's unimodular inverse is

E '[= 0 1]

K=

[I -X

since EE' = [X ] [0 I] = [I 0]

and E'E = I likewise follows.

Given the matrix

4.16
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"- = L =i(4.34)

"I D

where A,B,C,D are nXn matrices,

ERE -  = [X I] [A B] [0 I]

= [XA+C XB+D] [0 -I]

-- FXB+D XA+C-XBX-DX 1
LB A-BX J

= XB+D -XBX-DX+XA+C (4.35)
LB A-BX J

It can be seen that the 1-2th entry of ERE- is in the form

of the Riccati equation (4.2). However, to get the 1-2th

entry to agree exactly with (4.2) which is

XDX + AX + XB + C = 0

=-XDX - AX - XB - C (4.36)

it will be necessary to modify the R matrix (4.34). The

modification is implemented by comparing the form of the

1-2th entry of (4.35)

-XBX - DX + XA + C (from R)

with the the second equation in (4.36)

-XDX - AX - XB - C (original)

0 By matching the coefficient matrices A,B,C,D for like

expressions involving X, the suggested change is from

R [A B] to R (4.37)Iii C  D  -C A

So with this new form of R,

ERE - ' = X I][-B D] [0 I]

4.17
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IN

=[-XB-C XD.A] [1 0 1
-B' D7" I -I

1 rXD+A -XB-C-XDX-AX1 (4.38)
D -B - DX

If X is a solution of the 1-2th entry, then

-XB - C - XDX - AX = 0 = XDX + AX + XB + C

and X is a solution of (4.2).

The next insight stems from the procedure followed in

solving the Lypanov equation

AX- XB = C

In Theorems 4.10 and 4.11, a solution to the Lypanov

equation was found among the solutions to the pair of

equations (4.17)

U + XV = 0
M + XN =0

(derived from using the characteristic equation of A f^) and

(4.25)

N' - V'X = 0
M" -U'X =0

(derived from using the characteristic equation of B fa).

Although only one equation from each pair turned out to be
0

significant in solving (4.1), the original pairs point to

the solution of the Riccati equation. To obtain (4.17),

notice that if

I I0  X][U M] [ U + XV M + XN]

0 N V N

is set equal to

* [0 °]
I"V N

4.18
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* then matching the top rows will yield (4.17). The matrix

was picked because it helped generate the Lypanov equation

in (4.10). As before,

f.(R) U , R = [A C]
IV N0 B

The development of the pair (4.25) is similar: set

V N M -X I U -UX + M)

equal to

* [U 0] where fa(R) = [U M]

to obtain the pair (4.25).

The same approach will now be used to generate

solutions to the Riccati equation. Let f(x) be any

polynomial in the indeterminate x with degree 1.

From (4.37)

0R 
= [B D],'",-C A

Let f(R) = [U M] (4.39)

Now the crucial step: as if developing the pair (4.17), let

X be such that

Ef(R) = [X i [U M]

- [XU+V XM+N] [ 0] = S
U M U M(4. 40)

That such an X exists is motivated by the previous

discussion concerning the Lypanov equation. From (4.40)
4.19
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N K- f(R) = E-S or

f (R) [U M] [o x ][ o] _ [u 0X0] (4.41)
V N I - U M -XU -XM

Because f(x) is a polynomial in x, xf(x) = f(x)x and so from

(4.41)

Rf(R) = [-B D [ U M -BU-DXU -BM-DXM1 (4.42)
-C A -XU -XM -CU-AXU -CM-AXMJ

and

f(R)R r U M ][-B D] = [-UB-MC UD+MA 1 (4.43)
- -XU -XM -C A XUB+XMC -XUD-XMA

1 Since (4.42) and (4.43) are the same matrix

BU + DXU = UB + MC (4.44)
B BM + DXM = -UD - MA (4.45)
CU + AXU = -XUB - XMC (4.46)
CM + AXM = XUD + XMA (4.47)

Within the above four equations lie two solutions to

the Riccati equation (4.2). From (4.44) and (4.46),

CU + AXU= -X(UB + MC) =-X(BU + DXU) =-XBU - XDXU

and so

. CU + AXU + XBU + XDXU = 0CX X = (C + AX + XB + XDX)U (4.48)

If det(U) is a nonzero complex number, then U-1 exists and

from (4.48)

XDX + AX + XB + C : 0

and X satisfies the Riccati equation (4.2). The second

* solution uses (4.45) and (4.47):

CM + AXM = X(UD + MA) = X(-BM -DXM) =-XBM -XDXM

and so

* CM + AXM + XBM + XDXM = 0 = (C + AX + XB + XDX)M

4.20
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If det(M) is a nonzero complex number, M-1 exists and so

XDX + AX + XB + C =0

another solution to (4.2).

The following theorem due to Jones has now been

proven:

Theorem 4.12: Given AB,C,D 4 ¢"-.(r) and f(x) a

polynomial with degree 2 1, let

R [B D and f(R) [U M]

If X E t X (r) satisfies

XU + V = 0 (4.49)
XM + N = 0

and det(M) t € - (0), then XDX + AX + XB + C = 0. Also,

if X t ¢ xI(p) satisfies the pair (4.49) and

det(U) E -{0} then XDX + AX + XB + C =0.

Proof: previous discussion. U

A third solution exists for (4.2) but requires a

different setup akin to developing the pair (4.25). Let

R be as in (4.37) and f(R) as in (4.39). Let X satisfy

f(R) E = [U M1] [0 ] = [M U-MX]
"-, N I -X N V-NXJ

M M 0] (4.50)

That such an X exists is motivated by the development of the

• pair (4.25) for the Lypanov equation. (4.50) implies

f(R) = [U M] = [M 01 [X I] = [MX M] (4.51)

Since Rf(R) = f(R)R

*4.21
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Rf (R) = [- D] [MX M]

= [-BMX + DNX -BM + DN 1(4.52)
L-CMX + ANX -CM +-AN]J

and

[ -MX - MC MXD +MAI 
(453

1-NXB - NC NXD + NAJ

Equating last rows of (4.52) and (4.53)

NXB + NC = CMX - ANX (4.54)

NXD + NA = -CM + AN (4.55)

It follows that

*NXB + NC = (CM - AN)X (-NXD -NA)X

= -NXDX -NAX

and so

NXDX 4- NAX + NXB + NC =0 =N(XDX + AX + XB + C)

If det(N) is a nonzero complex number, N-1 exists and so

-~ XDX +-AX + XB + C = 0

and a third solution to (4.2) has been found and thus

Theorem 4.13: Given A,B,C,D E" *xr(r) and f(x) a

polynomial with degree Z1, let

R [B D] and f(R) =[U M]

If X 4-1rr() satisfies

U -MX -0 (4.56)

V - NX = 0

and detCN) t (0), then XDX + AX + XB+C 0.

Proof: previous discussion. S

* The next theorem presents a companion Riccati equation
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to that of (4.2) given a particular polynomial f(x):

Theorem 4.14: Let f(x) be a polynomial of degree

and

XDX + AX + XB + C = 0 AB,C,D,X V ¢x-(r)

with R and f(R) given by (4.37) and (4.39). Then

XMX + NX - XU - V = 0

Proof: It has already been shown that

E = [X I] and E'= 0 I1 01 x]
are both unimodular and inverses of one another. From

(4.38) and the given,

ERE-' = XD+A 0
[ D -B - DX]

From Theorem 4.8,

f(ERE-2 = f(XD+A) 0 (.7
i  f E[ f l A )* f (-B-DX)] (4.57)

= Ef(R)E-1  (from Theorem 4.6)

1 0 V N I _X

=[XU + V XM +N] [0 1]

= X N XU+V-XMX- NX (4.58)

Equating the 1-2th entries of (4.57) and (4.58),

XU+ V -XMX -NX= 0 =XMX + NX -XU -V

4.23
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V Solutions of the Third Order Riccati Eauation
" "XAXBX + XCX + XD + EX + F - 0

This chapter will discuss some of the approaches which

may yield solutions to the third order Riccati equation

XAXBX + XCX + XD + EX + F = 0 (5.1)

where A,B,C,D,E,F,X ¢ Xr(p), P the tuple of variates. The

approach for (5.1) will be less general than that for the

second order Riccati and Lypanov equations because of the

form of (5.1). Difficulties stemming from this form are

discussed in the ni., chapter.

* One approach to solving (5.1) is akin to that taken for

the second order Riccati. Let A,B,C,D,E,F be known matrices

in ¢,-x-(p) and

'S ! R = [A B]!I D

and

f (R) - U M]

where f(x) is a given polynomial with degree 1. As seen

previously, if X * 4-X(r) ,

II X] [Uu M [I -XI [U + XV -(U + XV)X + (XN + M)
L0 1iV N LO 1 LV N -VX

Suppose U + XV = 0 (motivated by its appearance in

solving for the Lypanov and second order Riccati equations).

Thus

U = -XV (5.2)

Because f(R) is a polynomial in R, R and f(R) commute. From
0

(5.2),
0. 1
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f (R) = [XV M]

It follows that

Rf(R) =[A B1 [-XV M] BV -VAXV AM +BN

and

f(R)R =[-XV M] [A B]= [MC - XVA MD - XVB 1
V..NJ [C D LVA +NC VB +NDJ

Equating the first columns,

BV -AXV =MC- XVA (5.3)
DV -CXV =VA + NC (5.4)

VA appears in the right hand sides of (5.3) and (5.4). if

MC in (5.3) involved XNC, then a substitution from (5.4)

could be made in (5.3). Accordingly, let

MC = -XNC -(5.5)

Then (5.3) becomes

BV - AXV -(-XNC - E) - XVA

- -X(NC + VA) - E
=-X(DV - CXV) - Z (from (5.4))

- XDV + XCXV - E
or

XCXV -XDV +AXV -BV- E=O0 (5.6)

Because all terms except E end in V, let

4 C =eiV

(5.6) then becomes

(XCX - XD +- AX - B - e1 )V =0

If det(V) is a complex, non-zero number (easily verified

since f(R) is known), then the inverse of V exists and so

XCX -XD +AX -B - e 1  0 (5.7)

Since solutions of the third order Riccati equation are
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U

sought, let e= -XEXFX. (5.7) then becomes

XEXFX + XCX + AX - XD - B = 0 (e)

and X is a solution to this third order Riccati equation.

However, since e. = -XEXFX and Z = eV, it follows that

E = -XEXFXV and from (5.2), E = XEXFU. From (5.5) it

follows that

7, MC = -XNC - E -XNC - XEXFU

To summarize, if

R R= AB] f(R) U MI
SC D IV N

det(V) a non-zero complex number and X satisfies the pair of

equations

U + XV =0

-XEXFU - XNC = MC (5.9)

then X is a solution to the third order Riccati equation

XEXFX + XCX + AX - XD - B = 0 (5.10)

If det(FU) is a non-zero complex number, then (5.9) can be

reduced to a second order Riccati equation of the form

solved in the previous chapter.

Another solution to (5.10) can be gleened using the

* above approach. Let XN + M = 0. Then

Rf(R) = [A B] [U -XN [AU + BV BDN - AXN] (5.11)

and

f(R)R = = B] [UA - XNC UB -XNDJ (5.12)

Equating the second columns of (5.11) and (5.12),

4 -AXN + BN = UB - XND (5.13)
-CXN + DN = VB + ND (5.14)

5.3
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Noticing that ND appears in the right hand sides, let

UB = -XVB + E (5.15)

Then (5.13) becomes

-AXN + BN = (-XVB + E) - XND
= -X(VB + ND) + E
= -X(DN - CXN) + E
= -XDN + XCXN + E (5.16)

and so

XCXN - XDN + AXN- BN + = 0 (5.17)

Let = eN. Then (5.17) becomes

(XCX - XD + AX - B + e1 )N = 0

If det(N) is a non-zero complex number, then N has ano

inverse, and so

XCX -XD + AX-B+e 1 =0 (5.16)

If el = XEXFX then

XCX - XD + AX - B + XEXFX = 0

and another solution to the third order Riccati has been

found. Since E = eN, E = XEXFXN = -XEXFM. (5.15) then

becomes

UB = -XVB - XEXFM

* " Thus, if X is a common solution to the pair of equations

0 = XN + M
UB = -XVB - XEXFM

and det(N) is non-zero complex, then

XEXFX + XCX + AX - XD - B = 0

Another approach to solving (5.1) extends the solution

via similarity transformation used in the matrix equations

presented herein. Though this approach fails to generate
5.4
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sets of equations (whose common solutions satisfy (5.1)), it

does present relations among the coefficient matrices for a

restricted case of (5.1).

Let A,B,C,D,E,F,6,H E t-x-(r). Then given X ¢

[E4XG FHXH [A+XC -AX-XCX+B+XD

By multiplying these matrices, the following entries of

are obtained:

1-1: EA + EXC + XSA + XGXC + FC + XHC (5.19)
1-2: -XGXCX - X(GA+HC)X - (EA+FC)X + X(GB+HD) +

(EB+FD) + (EXD-EXCX+XGXD) (5.20)
1-3: GA + GXC + HC (5.21)
1-4: GB + SXD - GAX - GXCX + HD - HCX

Of the entries, the only one in which the "cubic" of the

third order Riccati appears is (5.20), that is, XGXCX. If

it weren't for the last term in paranthesis in (5.20), the

form of (5.20) would be the same as that of (5.1). In order

to eliminate this last term and preserve the structural

integrity of (5.20), let D = E = 0. It follows that

= rXA+XGXC+FC+XHC -XGXCX-X (GA+HC) X-FCX+XGB1 (5.22)
-GA+GXC+HC GB-GAX-GXCX-HCX J

If X were a solution to 1(1,2), then X would be a solution

* to a third order Riccati equation of the form

XAXBX + XCX + XD + EX = 0 (5.23)

which is a special case of (5.1). From the remarks

* preceeding (5.19), it follows that (since D = E = 0)

5.5
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I=[I X1 [0 F] [I X] [A B] [I -X] (5.24)

= XGA+XGXC+FC4+XHC 0 ] (5.25)

Multiplying the three middle matrices in (5.24),

[ I] X] f[A B] =[F+C +x OB] (5.26)

If f(x) is any polynomial of degree 1 1, then from (5.24)

and Theorem 4.6,

and from Theorem 4.8

f() ~;X1 [f(FC) f(BJ [~-] (5.27)

Sf (XGA+XGXC+FC+XHC) 0G-A~XC-C)

Since f(j) and f('§,) are similar matrices, they have the

same determinants. From the permutational definition of the

IN determinant (2.13),

det(f(t)) =det~f(XBA+XGXC4FC+XHC)3

detEf (GB-GAX-GXCX-HCX)] (5.28)

and

det (f(~) det Cf (FC)] 3 det If (GB))3 (5.29)

and thus

detE-F(FC)3 det~f(GB)3 detEf(XGA+XBXC+FC+XHC)3
* dettf (GB-GAX-GXCX-HCX)]

The following theorem has now been proven:

Theorem 5.1: Given A,B,C,F,G,H I-x r, and

* X ~ t r() a solution to
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-XSXCX-X(GAHC)X-FCX'XB 0
'~ '**-then

detlf(FC)3 detEf(GB)J det~f(XGA+XGXC+FC+XHC)J

detlf (GB-GAX-GXCX-HCX) J

Proof: previous discussion.U

Theorem 5.1 may be extended to a Riccati equation of

the form

XAXA=X + XAmX + A4,X + Mae= 0 (5.30)

To get this equation in the form (of the given in

Theorem 5.1)

-XGXCX-X(GA+HC)X-FCX.XGB = 0

equating coefficient matrices is done. Thus

A= = C (5.32)
A= -(GA + HC) =A 1 A -HA 2  (5.33)

A,* = -FC = -FA2  5.4
Am = GB = -A,1 B (5.35)

Since 6 and C are readily known, it remains to determine

A,H,F and B. From the above equations, one may have

considerable latitude in choosing A,H,F,B. From (5.35), B

satisfies the equation AB =-Am. Likewise, F satisfies

the equation FAm -A^. Lastly, A and H satisfy the Lypanov

0 equation (5.33)

Az AA - HA=

By proper choice of A,B,FH, the challenge of finding

* solutions to (5.30) via Theorem 5.1 may be made easier.
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VI Conclusions and Recommendations

This paper sought the solution X to four types of

matrix equations: the linear equation

AX = b

the Lypanov equation

AX- XB = C

the second-order Riccati equation

XDX + AX + XB + C = 0

and the third-order Riccati equation

XAXBX + XCX + XD + EX + F = 0

where the entries of all matrices are restricted to being

multivariate polynomials over the complex numbers. The

method of solution involved two phases:

1. identify a similarity transformation on a matrix
in which is embedded the coefficient matrices of
the above equations. The transformation gives a
matrix whose entries include the equation being
solved.

2. identify a polynomial which, when its argument is
the matrix Z in (1), gives a matrix whose entries
yield pairs of linear equations. The common
solutions of these pairs of equations will contain
those of the given matrix equation. The choice of
polynomial may yield different solutions.

Since the search for solutions ends in solving a linear

equation, a method was presented which may identify the

general solution of the given linear equation. The method's

success depends on if the matrix A in AX = b is reducible to

a Smith Form. The similarity transformation of (1) is given

by E E E - I where E equals

6. 1



[X]

(which is unimodular) and for the Lypanov equation equals

° ,t0 B

and E for the second order Riccati equals

[I -B]".. -C A

The third order Riccati presented difficulties because its

form wasn't adaptable to the method of similarity

transformations. Nevertheless, a transformation could be

done which might yield some solutions. When successful, the

solution to the third order Riccati was a common solution to

a linear and a second order Riccati equation. The

polynomial in (2) can assume any form and when its argument

is ~

f(s) = U M] (6.1)- V pl

The submatrices U,M,V,N yield pairs of equations which

depend on the matrix equation being solved. These pairs in

turn yield solutions of the original matrix equation.

Recommendations. The biggest challenge is also the

central concern: develop the mathematical theory which will

identify whether or not a given matrix, whose entries are

* multivariate polynomials, is reducible to Smith Form.

Though the answer for the two-variate polynomial case is

known, the three or more variate case remains an open

* question. It's felt that this challenge will involve

6.2
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creative work involving number theory, abstract algebra, and

matrix theory. Once the theory identifying the conditions

under which reducibility to Smith Form is known, the next

hurdle will be to develop a computer algorithm performing

the reductions (the Smith Form may not be unique). The

papers [8] and E20] give approaches to the two-variate case,

and the papers [233 and [33] give insights dealing with the

'1computer programming algebra" of matrix forms and

polynomials. Perhaps there is an underlying linear

programming or network formulation to the Smith Form

reduction.

In solving the Lypanov and Riccati equations, it was

necessary to assume the existence of the inverse to one or

more of the submatrices in (6.1). Of course, (6.1) depends

on the polynomial f(x) chosen, which in turn dictates the

types of solutions found to the original matrix equation.

Research needs to be done into the types of polynomials

yielding one or more invertible submatrices of (6.1).

Perhaps there are equivalence classes of polynomials. Or

families of polynomials. Maybe there is no structure. Or

perhaps there is a "minimum" polynomial which (in some way)

generates all polynomials yielding invertible submatrices.

Again, a knowledge of abstract algebra may prove valuable:

much literature dealing with polynomial structures is

couched in abstract algebraic terms.

4 Much effort was spent in finding the "proper embedding"
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for the third order Riccati equation. Disappointingly

limited success was realized. To see what is meant by

"proper embedding", notice that in

[I X] [A B] [I -X] = [A + XC -AX - XCX + B + XD

a second order Riccati equation is found in the 1-2th

position of the matrix on the right. If C = 0, then this

equation becomes the Lypanov. Thus the Lypanov and second

order Riccati equations are "embedded" in the matrix on the

right, which in turn comes from the similarity

transformation on the left. Since this approach has proven

so successful in generating linear equations whose solutions

are those to the Lypanov and second order Riccati equations,

it is natural to extend the similarity transformation to

0,w handle the third order Riccati equation.

Unfortunately, this is more easily said than done.

Since the third order Riccati equation

XAXBX + XCX + XD + EX + F = 0 (6.2)

has six coefficient matrices, the above approach would have

to be modified to handle these six. As it stands, it is

geared to the four coefficients of the second order Riccati

equation. Is it possible to work with matrices which are

two sub-matrices deep and wide, or is it necessary to go to

higher order matrices, perhaps three submatrices in

dimension. If so, what would the unimodular matrix be that

effects the similarity transformation? Is the restriction

?" of unimodularity unduly restrictive, mandatory though it
6.4
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seems? Also, the first term XAXBX of (6.2) presents a

challenge: how to introduce the middle X from the

transformation E r E-1 while hopefully embedding a third

order Riccati equation in the resulting matrix of

-  transition. Perhaps a different type of transformation

needs to be done. Instead of a single transform, a string

of transforms may be the answer, for example

E1 rE=r=E=

where the are matrices whose entries include the

coefficient matrices, and the Ej contain the solution X. If

this approach is indeed the way to go, how are the Ej's

related. Again, the third order Riccati should be embedded

somewhere in the resulting matrix.

Or should it? If not embedded, could other matrix

equations which are embedded as a matter of course yield, in

some combination, some (or all!) solutions of the third

order Riccati? Another concern arises: in the approaches

- presented herein, a specially selected polynomial f(x)

played the crucial role of generating pairs of equations

whose common solutions included those of the matrix equation

in question. For the third order Riccati, how is the

polynomial to be selected? How shrild the pairs be

* generated, if indeed this pattern holds? Perhaps triplets

of equations arise instead of pairs.

-.0 The unsettling thought occurs: maybe similarity

* transforms are not powerful enough for the third order
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Riccati, and whole new approaches are in order. After all,

current research into these matrix equations is still in the

pioneering stages. Hopefully, the successful resolution to

r the third order Riccati equation will point the way to

solving higher order Riccati equations. However, a spectre

appears: in solving for the roots of a polynomial in one

variable, the insolvability of the quintic was demonstrated

by Abel in the early nineteenth century. Could there be a

similar obstacle ahead for matrix equations? In any case,

finding solutions to matrix equations will prove challenging

and endlessly fascinating--as well as having immediate

practical applications.

The last recommendation is a minor one: create a new

segment (in the computer program of Appendix A) which will

compute the determinant of a given square matrix having

multivariate polynomial entries. The method would have to

keep calculations down to a minimum, since finding

'- determinants is computationally intensive. One approach,

which seems to be the quickest way to find a matrix's

* determinant, was published by G. Macloskie [22] in 1904.

This method could be adapted to that of finding determinants

for matrices with polynomial entries.

0
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Appendix A: BASIC Program performing matrix operations

The following BASIC program performs operations on

rectangular matrices having multivariate polynomial entries

over the real numbers. Via menu options, the interactive

program allows the user to

-create a matrix
-view a matrix
-transpose a matrix
-add two matrices
-multiply two matrices
-extract the UqM,V,N matrices from a given matrix

The size of matrices which the program can handle is limited

only by the amount of memory available on the computer and

the parameters in the DIMENSION statement. The program was

designed on an IBM PC (DOS 3.0) and was intended to assist

the thesis effort.

The program's logic hinges upon the way it recognizes a

polynomial in n-variates: as a set of (n+l)-tuples each of

whose entries come from the coefficients and exponents of

the polynomial. To obtain the tuples, the entire polynomial

is re-expressed in "standard form" as a sum of terms, each

*having all variate and exponent positions appear. For

instance, the polynomial in the variates x and y

2x2 y - 17xyO - 3y + 7 (A.1)

0 is re-expressed in standard form as

2x-y1 + (-17x'yo) + (-3x3y') + (7x0yO) (A.2)

and is the sum of the four terms 2x 2 y', -17x'y, -3xOy,

* .7xOyO. Though the order of the variates (i.e., x before y

A. 1



versus y before x) is arbitrary, the order must be

consistent.

Once in standard form, each term is put into its

tuple representation

(coefficient, exponent1 ,...,exponent,) (A.3)

with the polynomial represented by the collection of the

tuples. For the above example:

TERM 3-tuple

2xy, ( 2,2,1)
-17x'y- (-17,1,5)
-3x-y1 (-3,0,1)
7xoy °  ( 7,0,0)

and so the polynomial

2x~y - 17xy5 - 3y + 7

is represented by the set

{ (2,2,1), (-17,1,5), (-3,0,1), (7,0,0) }

Similarly, the polynomial

42xyuvz - 2z yx

is re-expressed in the standard form (variate order is

x,yqzu,v)

42xiyzluvl± + (-2xly'z2u-vO)

and thus the set of 6-tuples

( (42,1,1,1,1,1), (-2,1,1,2,0,0)}

Addition and multiplication between two polynomials are

easily expressed in terms of their tuple representations

provided

A.2
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v ..>x.-all tuples have the same number of entries
-coordinate positions all correspond to the same
variable

Addition. Given two terms in n-variates, let (a,a) and

(b,(3) be their respective (n+1)-tuple representations where

a,b are the coefficients of each term and a,I3 the

exponent vectors. For example, if the terms are 3x y and

7x~yW, then

3x--2y i (392,1) , a = 3, al = (2,1)

7x'yo , (799,5) , b = 7, 13 - (9,5)

Tuple addition is defined by

C(a,El), (b,B) B *1
(a, 9) 416 (b, B) =(A.4)

(a+b,) v B

The operation 4il is clearly commutative. To add two

polynomials, the tuples rerresenting the terms are added

according to (A.4). For example:

(2x~y - 9 Xy) + (4xyO + xZy)

E (2,291) 41r (-9,1,2)3 4r E(4,1,2) 4Ir (1,2,1) 3

then, rearranging terms

E (2,291) -4- (1,2,1)3 4 (-9,1,2) -- (4,1,2)3
=(3,12,1) 4ir (-5,1,2)
=((3,2,1), (-5,1,2)

S3x y - 5xy 2 U

Multiplication. Multiplication between two tuples is

defined by

*(a,aie(b,B) =(ab,El+f) (A.5)

where a + B3 in. the familiar operation of addition between

two vectors in Euclidean n-space. For example,
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(2x5y3Y ) (6x ym=) (2,3,5)*(6,7 8)

= (2*6,3+7,5+8i
(12,10,13)
12xOy1=

Using (A.5) the tuple representation of the product

between two polynomials is quickly found. Consider the

product of the n-term polynomial

TERM%1 , ... + TERM,,. (A.6)

and the m-term polynomial

TERM=, + ... + TERM=m (A.7)

which is

TERM11 (TERM=i + ... + TERM=.) + . (A.8)
* + TERMri(TERM=i + ... + TERM=m)

= (TERMITERM=l + ... + TERM,,TERM=m) + .
+ (TERMiriTERM=i + ... + TERMi,,TERMm,)

If the value of TERMJk is now changed to the tuple form

of the polynomial element TERMJk, then the product of (A.6)

and (A.7) expressed in tuple form is

= (TERM1 1 #TERM=,1 r ... TERM,1 *TERM=.) .

i (TERM , TERM=1 A ... . TERM , TERM m)

EXAMPLE:

(x 2y 3  
+ 1 2 xy ) (xy7 + 11xey)
-= (x(yx) (xby7) + (x1yO)(11xey ) (

+ (12x'y -) (x6Yv) +(2~ = ) (l~

, [(1,2,3) -(1,6,7)] 3 [irE(1,2,3) *(11,8,;Y3

1 [(12,4,5) * (1,6,7) 3 [ ((12,4,5) * (11,8,9)]
= (1,8,10) i (11,10,12)

r (12,10,12) r (132,12,14)
= (1,8,10) 4 (23,10,12) i (132,12,14)
*( {(1,8,10), (23,10,12), (132,12,14) }

x y0 + 2 3 xiOy:m + 13 2x'"y" U

Network. Put in a nutshell, the program keeps track of

tuple operations using a system of pointers (program lines

1150-1490). That is, a network tree is constructed which
A.4
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represents the results of tuple operations. This section

assumes knowledge of networks as given in 110:91-1243.

The fundamental insight is that a polynomial can be

represented by a tree. Specifically, the results of tuple

operations is maintained in a network tree whose nodes

represent a particular variate in a polynomial term. Nodal

"potentials" are the exponent of the corresponding variate.

Terminal nodes of the polynomial s tree have a second

potential whose value is that of the coefficient of a

particular term. The i'th depth of the tree corresponds to

the i'th variate. For example, the polynomial

3x--yz13 - 7 xtmylz + 8xl=y"zM.

is represented by the tree in Figure 1. All the nodes at

depth one are x variates; nodes at depth two are y variates;

nodes at depth three are z variates. The numbers in E] are

node potentials, and numbers in []* are the coefficient of

jthe given polynomial term. From this example, it can be

seen that a polynomial term corresponds to a unique path

from node 0 to a given terminal node at depth three, e.g.,

the term 8xl yz:2 has the nodal path 0-4-5-7.

In performing a tuple operation, the order in which the

branches are built are term by term. The following example

illustrates the sequence in which the program builds

branches.

EXAMPLE: Construct the tree representing

x'(1 + y) + y(x2 + y)
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X(11 + y) + y(x5 + y) = x- + X-y + yx + yO
= X2 Y 0  + x y'Y , + Y'x " + X y m (A.9)

I4 Since there are 2 variates x,y the tree will have 2 depths.

The first term is x~yO which contributes the first branch

0-1-2 in Figure 2. The second term x2 y, contributes the

branch 0-1-3 in Figure 3. Note that the second potential of

node 3 (11*) is 1: the coefficient of the second term x=y I .

. Because the third term of (A.9) is also x=y*, it doesn't

contribute a branch to the tree. However, the second

potential at node 3 is increased by 1: the coefficient in

the third term x=yi (Figure 4). The fourth term x~y-

. contributes thp branch 0-4-5 in Figure 5. Since there are

no more terms in (A.9), the tree in Figure 5 represents the

polynomial x-(1 + y) + y(xo + y)

Manual .-rut of data. When creating a matrix via the

menu prompt trw "huild a matrix", polynomials are entered

term by term in their tuple form with no commas between

tuple entries. Each tuple MUST remain on the same line, and

each tuple except the last ends with a carriage return; the

*" last tuple ends with a semicolon followed by a carriage

return. The program will then prompt for the next

polynomial entry and the above protocol is repeated. A

sample session inputing the matrix

= [x+ 3xyz + z- 4 + 2x - 3y1 (A.10)

za + 17y'm x:yz J

"° is given in Figure 6.

* Output. The program outputs a polynomial in its tuple

A.6
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-form. Figure 7 is a sample session which printed the matrix

fA(R) preceeding (4.23).
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* Figure 1. Network tree representing the polynomial

32yZ13 -7 12 9Z 12 2
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x14,

Fig. 2. Branch for x Fig. 3. Branch for x2 + x2 y

-- 2 2
'

Fig. 4. Branch for x2  2x y Fig. 5. Branch for

x + 2x2y +y 2
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MENU:
B Build a new matrix"
V View a matrix"
* Transpose a matrix"
+ Add 2 matrices"
* Multiply 2 matrices"
U Extract UM,V,N matrices

Matrix name? B:Q
ROW,COL dimension? 2,2
Number of polynomial variates? 3
Build a square diagonal matrix whose diagonal entries

are equal Y/N? N
*** COEF EXPI EXP2 ... EXPn ***
a semicolon ; represents end of polynomial' "'.(1,1):

71200
?3 1 1 1

? 1 0 0 2;

(1.,2):
?4000

?2 100
? -3 0 1 0;

(291):
? 1006
7 17 098 o;

(2,2):
? 1 2 3 4;

Figure 6. Session building matrix (A.10)
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MENU:
B Build a new matrix"
V View a matrix"

Transpose a matrix"
+ Add 2 matrices"
* Multiply 2 matrices"
U Extract U,M,V,N matrices

? V
Screen output Y/N? Y
Matrix to view? B:fA(R)

MATRIX B:fA(R) IS 4 X 4 and has 2 polynomial variates
B:fA(R)( 1, 1): B:fA(R)( 3, 1):
0 0 0 0 0 0

B:fA(R)( 1, 2): B:fA(R)( 3, 2):
0 0 0 0 0 0

B:fA(R)( 1, 3): B:fA(R)( 3, 3):
-1 2 1 2 2 0
3 3 0 -2 1 1

B:fA(R)( 1, 4): B:fA(R)( 3, 4):
-5 3 0 -3 2 0
7 2 1 2 1 1

-2 1 2

B:fA(R) ( 2, 1): B:fA(R) ( 4, 1):
0 0 0 0 0 0

B:fA(R)( 2, 2): B:fA(R)( 4, 2):
0 0 0 0 0 0

B-fA(R)( 2, 3): B:fA(R)( 4, 3):
5 1 2 -1 1 1

-5 3 0 -3 2 0
-2 0 3 2 0 2
2 2 1

B:fA(R)( 2, 4): B:fA(R)( 4, 4):
2 1 2 5 2 0
8 3 0 -4 1 1

-8 2 1

Figure 7. Session viewing the matrix fA(R) preceeding
(4.23)
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NOTE: the program has been modified to fit within the
format requirements of the AFIT Style Guide, and so
doesn't represent the correct syntax of the program.
However, the adjustments are few and are apparent.

o10 CPT Bruce W. Colletti, AFIT/EN; 1 August 1985
20 'The input file for this program (which multiplies 2
30 'matrices having multivariate polynomial entries)

'has the following

40 'structure:
50 line 1: row, column dimension of matrix A;

number of variates
60 line 2: number of terms in the A(1,1)

polynomial
70 ' line 3: tuple corresponding to the 1st term of

A(1,1)
80 ' line 4: tuple corresponding to the 2nd term of

A(1,1)
90 ' line n: tuple corresponding to the last term

of A(1,1)
100 ' line n+1: number of terms in the A(1,2)

polynomial
110 ' line n+2: tuple corresponding to the 1st term of

A(1,2)
120 ' line n+3: tuple corresponding to the 2nd term of

A(1,2)
130 " line m: tuple corresponding to the last term

of A(1,2)
140 ' line m+1: number of terms in the A(1,3)

polynomial
150 " etc: matrix entries are entered row at a

time
160 CLS : CLEAR
170 ROWS - 5 : COLS = 5 : TERM - 25 : VAR = 5
180 DIM A(ROWSCOLSTERMVAR), B(ROWSCOLSTERMVAR),

BS(20)
190 DIM F(90),POT(90),R(90),BACK(90),M(90),E(VAR)
200 DIM COEFL(ROWS,COLS),COEFR(ROWS,COLS)
210 'A contains the elements of the left matrix and B

'the elements of
220 'the right (e.g., A + B, A*B):
230 'A(IJ,K,L) the exponent of the L'th variate of the

'K'th term of the
240 1 I-J'th polynomial entry of A
250 'B(IJKL) the exponent of the L'th variate of the

'K'th term of the
260 " I-JYth polynomial entry of B
270 BACK(i) the node-back pointer for node i
280 'COEFL(ij) the number of terms in the polynomial

' located at
290 ' A(i,j)

300 'COEFR(i,j) the number of terms in the polynomial
*located at



, . 310 "B(i ,j)
320 E(i) contains the exponent of the i'th

' variable of the
330 product between 2 polynomial terms
340 F(i) forward pointer for node i
350 M(i) the "summed coefficient". This is a

.- node in the final
360 tree with no forward pointer. It is

* the coefficient of
370 that term of the polynomial having the

. path from given
380 terminal node to source node
390 POT(i) potential of node i; that is, the

exponent of the
400 variable represented by the node
410 R(i) the right pointer for node i
420 PR I NT "*************************************"
430 PRINT "MENU:"
440 PRINT " B Build a new matrix"
450 PRINT " V View a matrix"
460 PRINT " Transpose a matrix"

* 470 PRINT " + Add 2 matrices"
480 PRINT " * Multiply 2 matrices"
490 PRINT " U Extract U,M,V,N matrices
500 PRINT "************************************"
510 INPUT OPTS
520 IF OPTS = "B" THEN 2410
530 IF OPTS = "V" THEN 2790
540 IF OPTS = "U" THEN 3470
550 IF OPTS = "'" THEN 3130
560 IF ((OPTS <> "* '

") AND (OPTS <> "+")) THEN 420
570 INPUT "Left matrix"; FILELS
580 INPUT "Right matrix"; FILERS
590 INPUT "Output matrix"; FILEOS
600 IF OPTS = """ THEN 620
610 INPUT ",i E R in aLEFT*RIGHT"; ALPHA : SOTO 630
620 INPUT ",B E R in ,(LEFT + BRIGHT"; ALPHABETA
630 FILES = FILELS : GOSUB 950
640 ROW1 =ROW : COLI = COL : V1 = V
650 FILES = FILERS : GOSUB 950
660 ROW2 ROW s COL2 = COL : V2= V
670 IF V1 <> V2 THEN 1730
680 IF ((OPTS - "+") AND

((ROW1 <> ROW) OR (COL1 <> COL))) THEN 1560
690 IF ((OPTS - "*") AND (COL1 <> ROW)) THEN 1560
700 OPEN FILEO$ FOR OUTPUT AS #2
710 IF OPTS = "+" THEN GOSUB 2140
720 PRINT #2, ROW1; COL2; V
730 FOR I1 = 1 TO ROW1
740 FOR I2 = 1 TO COL2
750 PRINT "("; I1; ","; 12; ")"

760 GOSUB 1800
770 FOR 13 =1 TO COL1

.'J.

6e
i -S.- . . , " • ' " " # . . . . ° o 

°
• " 

o
' ' ' , 

°
"



780 TI = COEFL(I1,13) : T2 = COEFR(13, I2)
-.. 790 FOR I4 = 1 TO TI

800 FOR I5 = 1 TO T2
810 PROD = ALPHA * A(II,I3,I4,0) *

B(I3,I2,15,0)
820 FOR I6= 1 TO V
830 E(16) = A(I,I3,I4,I6) + B(13,12,I5,16)
840 NEXT 16
850 GOSUB 1150
860 NEXT I5
870 NEXT 14
880 NEXT 13
890 GOSUB 1870
900 NEXT 12
910 NEXT I1
920 CLOSE #2
930 STOP
940 'Subroutine reads a matrix for +/* routines

,, ,: 950 OPEN FILES FOR INPUT AS #1
960 INPUT #1, ROW,COL,V

- 970 IF ((ROW > ROWS) OR (COL > COLS)) THEN 1620
- 980 FOR I =1 TO ROW

990 FOR J = 1 TO COL
1000 INPUT #1, TERMS
1010 IF TERMS > TERM THEN 1680
1020 IF FILES = FILELS THEN COEFL(I,J) = TERMS
1030 IF FILES = FILERS THEN COEFRIIJ) = TERMS
1040 FOR K = 1 TO TERMS
1050 FOR L = 0 TO V

. 1060 IF FILES = FILERS THEN 1080
1070 INPUT #1, A(I,J,K,L) : GOTO 1090
1080 INPUT #1, B(IJ,KL)
1090 NEXT L
1100 NEXT K
1110 NEXT J
1120 NEXT I
1130 CLOSE #1
1140 RETURN
1150 'Pointer ordering subroutine
1160 I = 1 : CNODE = F(O) : BK = 0
1170 IF CNODE = 0 THEN 1370
1180 BASE = BK
1190 IF POT(CNODE) = E(I) THEN 1430
1200 BK = CNODE
1210 CNODE = R(CNODE)
1220 IF CNODE <> 0 THEN 1190
1230 NODES = NODES + 1
1240 POT(NODES) = E(I)
1250 R(BK) - NODES
1260 BACK(NODES) = BASE
1270 BK - NODES
1280 FOR J - I+1 TO V
1290 NODES = NODES + 1

nA , ,



1300 POT(NODES) = E(J)
1310 BACK(NODES) = BK
1320 F (BK) = NODES
1330 BK = NODES
1340 NEXT J
1350 M(BK) = M(BK) + PROD
1360 GOTO 1490
1370 NODES = NODES + 1
1380 F(NODES) = 0
1390 F(BK) = NODES

' 1400 BACK(NODES) = BK
1410 CNODE = NODES
1420 POT(CNODE) = E(I)

- 1430 BASE - CNODE
1440 I 1+ 1 'I is the same as the Depth of a node
1450 IF (I > V) THEN M(CNODE) = M(CNODE) + PROD :

GOTO 1490
1460 BK = CNODE
1470 CNODE = F(CNODE)
1480 GOTO 1170
1490 RETURN
1500 'Error routine for too many polynomial variates
1510 PR I NT "*************************************"
1520 PRINT CHRS(7); "DIM statement allows only "; VAR;

"variables. ";
1530 PRINT " Modify DIM statement";
1540 STOP
1550 'Error routine for ill-dimensioned matrices
1560 PRINT
1570 PRINT CHR*(7); "Dimensions incompatable"

. 1580 PRINT "R"; FILELe" is mSTR$(ROW); " X
STR$ (COL)

1590 PRINT " "- FILERS ; " is "; STR$(ROW); " X ";
STR$ (COL)

1600 STOP
1610 'Error routine for matrices whose dimensions are

'too large
1620 PRINT ************************************

* 1630 PRINT CHR$(7); "Modify the dimension statement in
the program"

1640 PRINT ; "The dimensions of "; FILES; "is ";

STRS(ROW);
1650 PRINT "* X "; STR*(COL)
1660 STOP
1670 'Error routine for a polynomial having too many

terms
1680 PRINT ******************************************"
1690 PRINT CHR$(7); "There are "; TERMS; "terms in

the ";
1700 PRINT "polynomial, whereas the DIM statement

* allocates "
1710 PRINT TERM; " terms in the polynomial. Modify

DIM stint."



1720 STOP
"-*.' 1730 PRINT ******************************************"

1740 PRINT CHR$(7); "Polynomial variates in matrices
aren't the same"

1750 STOP
1760 'Error for finding U,M,V,N matrices
1770 PRINT CHR$(7); "Source matrix "; FILEI$; " doesn't

have even";
1780 PRINT " row and column dimensions"
1790 STOP
1800 'Subroutine to clear tree building variables
1810 FOR I = 0 TO NODES
1820 F(I) = 0 : POTCI) = 0 : R(I) = 0
1830 BACK(I) = 0 : M(I) = 0
1840 NEXT I
1850 NODES = 0
1860 RETURN
1870 'Subroutine prints polynomial term
1880 S = 0
1890 FOR I = 1 TO NODES 'find * of terms in polynomial
1900 IF M(I) <> 0 THEN S = S + 1
1910 NEXT I
1920 IF S = 0 THEN 1940
1930 PRINT #2,S : SOTO 2000
1940 PRINT #2,"1";
1950 FOR I = 0 TO V 'handles a zero entry in result
1960 PRINT #290;
1970 NEXT I
1980 PRINT #2,""
1990 GOTO 2130
2000 FOR I = 1 TO NODES
2010 IF M(I) = 0 THEN 2120
2020 PRINT #2, M(I); 'coefficient of term
2030 PTR = I
2040 FOR J = V TO 1 STEP -1 'because we are going

from the
2050 ZZ(J) = POT(PTR) 'top of the tree down

but are
2060 PTR = BACK(PTR) 'writing the exponents

in the
2070 NEXT J 'reverse order
2080 FOR J = 1 TO V
2090 PRINT #2, ZZ(J);
2100 NEXT J

* 2110 PRINT #2,""
2120 NEXT I
2130 RETURN
2140 'Addition subroutine
2150 PRINT #2,ROW1; COLI; V1
2160 FOR I1 - 1 TO ROW1
2170 FOR I2 = 1 TO COL2

S- 2180 PRINT "C"; I1; ","; 12; "1)"

2190 GOSUB 1800 clear tree
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2200 'Send A(Il,I2) up through tree
2210 FOR 14 = 1 TO COEFL(I1,I2)
2220 PROD - ALPHA * A(I1 12,14,0)
2230 FOR16 = ITO V
2240 E(16) = A(I1,I2,I4,I6)
2250 NEXT 16
2260 GOSUB 1150
2270 NEXT 14
2280 'Send B(11,12) up through tree
2290 FOR 14 = 1 TO COEFR(I1,12)

*2300 PROD = BETA * B(I1,I2,14,0)
2310 FORI16= 1TO V

->2320 E(16) = B(11,12,14,16)
2330 NEXT 16
2340 GOSUB 1150
2350 NEXT 14
2360 GOSUB 1870
2370 NEXT 12
2380 NEXT Il
2390 CLOSE #2
2400 STOP

*2410 'Matrix input subroutine
2420 INPUT "Matrix name"; FILE$
2430 INPUT "-ROWCOL dimension"; ROWCOL

*2440 INPUT "Number of polynomial variates"; V
2450 OPEN FILE$ FOR OUTPUT AS #1
2480 PRINT "Build a square diagonal matrix whose

0 diagonal entries 11;
2470 PRINT "are equal YIN"; : INPUT OPTIS

*2480 IF ((OPTI$ <> "Y") AND (OPTIS <> "IN")) THEN 2460
2490 PRINT CHR$(7); "*** COEF EXPI EXP2 ... EXPn **

*2500 PRINT " a semicolon ; represents end of polynomial"
2510 PRINT #1, ROW; COL; V
2520 FOR I = 1 TO ROW
2530 FOR J =1TO COL
2540 S = 0 : AS =
2550 IF ((OPTIS = "IN") OR ((I=1) AND

(J-1))) THEN 2610
0.2560 IF I =J THEN S5 SS :PRINT #1,S:

SOTO 2680
2570 PRINT #1,1;
2580 FOR K - 0 TO V :PRINT #1,0; :NEXT K
2590 PRINT #1,""
2600 SOTO 2750

*2610 PRINT "("; STRSCI); "1,"; STRS(J); "1):

2620 WHILE (RIGHTS(ASj1) <> ""

2630 =6S+1I
2640 INPUT AS
2650 BS (S) =AS$ BBS (S) =AS

2660 WEND
2670 PRINT *1,5 SS =S

2680 FOR K ITO S-1
"2690 IF OPT1S="Y" THEN BS(K)=BBS(K)



2700 PRINT #19B$(K)
2710 NEXT K
2720 IF OPTI$ = "Y" THEN B$(S) =BBS(S)

2730 PRINT #1,LEFT$(BS(S) ,LEN(B$(S))-1)
2740 PRINT
2750 NEXT J
2760 NEXT I
2770 CLOSE #1
2780 SOTO 420
2790 subroutine views a matrix file
2800 INPUT "Screen output V/N"; OPTIS
2810 IF ((OPTIS <> "Y") AND (OPTIS <> "IN")) THEN 2800
2820 INPUT "Matrix to view"; FILE$
2830 OPEN FILES FOR INPUT AS #1
2840 INPUT #1, ROWCOLV
2850 IF OPTI$ = "Y'1 THEN 2690
2860 LPRINT "MATRIX "1; FILES; 11 IS 'I; STRS(ROW);

XV; STRS(COL);
2870 LPRINT " and has "; STRS(V); "polynomial variates"
2880 SOTO 2920
2890 PRINT "MATRIX "; FILES; "1 IS "1; STRS(ROW); "X"

0- STRS (COL);
2900 PRINT "and has "; STRS(V); " polynomial variates"
2910 PRINT
2920 FOR I I TO ROW
2930 FOR J = 1 TO COL

*2940 IF OPTI$ = "V" THEN 2970
2950 LPRINT FILES;*; STRS(I); ",;STRS(J); "1):

2960 SOTO 2980
2970 PRINT FILES;$; STRS(I); ",;STRS(J);")

2980 INPUT #1,S
2990 FOR K=-1TO S

N3000 LINE INPUT #1, AS
3010 IF OPTIS "Y" THEN 3030
3020 LPRINT AS S OTO 3040
3030 PRINT A$
3040 NEXT K
3050 IF OPTIS ="V' THEN 3080
3060 LPRINT
3070 SOTO 3090
3080 PRINT
3090 NEXT J
3100 NEXT I
3110 CLOSE #1
3120 SOTO 420
3130 'Subroutine transposes a matrix
3140 INPUT "Matrix to transpose"; FILES
3150 INPUT "Matrix to store transpose in"; FILEDS
3160 OPEN FILES FOR INPUT AS #1

*3170 INPUT #1, ROW,COL,V
03180 IF ((ROW > ROWS) OR (COL > COLS)) THEN 1620

3190 FOR I=1ITO ROW
3200 FOR J =1 TO COL



3210 INPUT #1, TERMS
3220 IF TERMS > TERM THEN 1680
3230 COEF(I,J) = TERMS
3240 FOR K = 1 TO TERMS
3250 FORL =O0TO V
3260 INPUT #1, A(I,J,K,L)
3270 NEXT L
32830 NEXT K
3290 NEXT J
3300 NEXT I
3310 CLOSE #1
3320 OPEN FILEOS FOR OUTPUT AS *1
3330 PRINT #1,COL;ROW;V
3340 FOR I = 1 TO COL
3350 FOR J = 1 TO ROW
3360 PRINT #1, COEF(J,I)
3370 FOR K = 1 TO COEF(J,I)
3380 FORL =O0TO V
3390 PRINT #1, A(J,I,K,L);
3400 NEXT L
3410 PRINT #I,""
3420 NEXT K
3430 NEXT J
3440 NEXT I
3450 CLOSE #1
3460 GOTO 420
3470 'Extracts U,M,V,N matrices
3480 INPUT "Source matrix of U,M,V,N"; FILElS
3490 INPUT "Disk to output to A/B"I; D$
3500 IF ((D$ <> "A") AND (D$ <> "B")) THEN 3490
3510 D$ = D$ +-":
3520 PRINT CHRS(7); "*** WARNING: files will be

output to "; D$;
3530 PRINT "IU,M,V,N *** I
3540 INPUT "OK V/N"; OPT$
3550 IF OPT$ <> "Y" THEN STOP
3560 FILE2$ = D$ + "U"
3570 FILE3$ = D$ + I'M"

*3580 FILE4$ = D$ +- "V"
3590 FILE5$ = D$ +- "N"
3600 OPEN FILElS FOR INPUT AS #1
3610 OPEN FILE2$ FOR OUTPUT AS #2
3620 OPEN FILE3$ FOR OUTPUT AS #3
3630 OPEN FILE4$ FOR OUTPUT AS #4

*3640 OPEN FILE5$ FOR OUTPUT AS #5
3650 INPUT #1,ROW,COL,V
3660 ROWi = ROW/2 : COLl - COL/2
3670 IF ((ROWi <> INT(ROW1)) OR

(COLl <> INT(COL1))) THEN 1760
3680 FOR I -2 TO 5 : PRINT #I,ROW1,COL1,V :NEXT I

0 3690 FOR I =1TO ROW
*3700 FOR J=1ITO COL
*3710 INPUT #1,S



S r ~- ----= - -- - ---- , . . - - r ... . . . .. .. -.. a l, .f -1 1

-"3720 FIL= 5
- 3730 IF (I <= ROWI) THEN FIL = 2

3740 IF ((FIL = 2) AND (J > COLl)) THEN FIL = 3
3750 IF ((FIL = 5) AND (W <= COL1)) THEN FIL = 4
3760 PRINT #FILS

-, 3770 FOR K = 1 TO S
3780 LINE INPUT #1,A$
3790 PRINT #FIL,A$
3800 NEXT K
3810 NEXT J
3820 NEXT I
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